
Compulsory for STK4021/9021 - Applied Bayesian Analysis

Fall 2020

October 19, 2020

This is the compulsory exercise for STK4021/9021 fall 2020. The deadline for the complete
compulsory exercise is
Thursday October 29 at 14.30.
Your report must be delivered in the Canvas system
(https://www.uio.no/tjenester/it/utdanning/canvas/).

Reports may be written in Norwegian or English, and should preferably be text-processed
(LaTeX, Word). Write concisely. Relevant figures need to be included in the report. Copies
of relevant parts of machine programs used (in R, or similar) are also to be included, perhaps
as an appendix to the report.

For the computations involved, it will clearly be the easiest to use R combined with
the rstanarm package, and example code is provided for this. It is however possibe to use
other tools, https://cran.r-project.org/web/views/Bayesian.html provide a range of
packages within R and you might also find sutiable packages within Python. Further, the Stan
package has interface towards Python (see https://pystan.readthedocs.io/en/latest/)
as well as other systems.

Exercise 1 (Deer data). Vicente et al. [2006] looked at the distribution of faecal shedding
patterns of the first-stage larvae (L1) of Elaphostrongylus cervi on red deer accross Spain. We
will here look at a subset of these data, focusing on the precence/absence of E.cervi L1 in
deer and the explanatory variables Length and Sex of the host as well as Farm identity.

The data are available on the file deerecervi.txt and can be read into R and summarized
through the commands
c o u r s e d i r = ” https : //www. uio . no/ s t u d i e r /emner/matnat/math/STK4021”
d = read . table ( paste ( cour s ed i r , ”/data/ d e e r e c e r v i . txt ” , sep=”” ) , header=T)
DeerEcervi$Length = DeerEcervi$Length/100
DeerEcervi$Sex <− factor ( DeerEcervi$Sex )
DeerEcervi$Farm <− factor ( DeerEcervi$Farm)
DeerEcervi$Ecerv i <− DeerEcervi$Ecervi >0
DeerEcervi$Ecerv i <− factor ( DeerEcervi$Ecerv i )
summary(d)

The scaling of the Length variable is mainly to make the estimates for the corresponding
regression variable comparable to other parameters involved. The other commands specify
that several of the variables are categorical.

The description of the variables are as follows:
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Ecervi a binary variable indicating the presence (1) or absence (0) of E.cervi L1 on the host.

Length a numeric variable giving length for the host.

Sex a binary variable giving the sex of the host

Farm a categorical variable giving the farm for the host.

We will in this exercise explore the influence of Length and Sex on the precence of E.cervi
L1 taking into account that there might be differences between farms.

(a). Start by performing ordinary logistic regression considering the following three different
models:
f i t 1<−glm( Ecerv i ˜ Length , data = DeerEcervi , family = binomial )
f i t 2<−glm( Ecerv i ˜ Length + Sex , data = DeerEcervi , family = binomial )
f i t 3<−glm( Ecerv i ˜ Length + Sex + Farm , data = DeerEcervi , family = binomial )
show(AIC( f i t 1 , f i t 2 , f i t 3 ) )

For each of the commands above, write down the corresponding logistic regression
model.
Run the commands and discuss the results you get.

(b). We will now turn to a Bayesian approach. First, we will however discuss some issues
with respect to priors and scaling. Consider the general regression model

yi ∼f(µi)

µi =β0 +
k∑
j=1

βjxi,j
(1)

Define x̄j = 1
n

∑n
i=1 xi,j and s2

j = 1
n−1

∑n
i=1(xi,j − x̄j)2. Consider further the standard-

izations

x̃i,j = xi,j − x̄j
sj

, j = 1, ..., k.

Show that the regression model can be rewritten to

yi ∼f(µ̃i;φ)

µ̃i =β̃0 +
k∑
j=1

β̃j x̃i,j
(2)

for appropriate definitions of β̃0, β̃j .
Argue why it should be easier to define some default priors for (β̃0, β̃1, ..., β̃k) compared
to (β0, β1, ..., βk).

(c). Assume now independent priors for the parameters involved and

p(β̃0) =N(0, τ2
0 );

p(β̃j) =N(0, τ2
β), j = 1, ..., k.
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With the relations between (β̃0, β̃1, ..., β̃k) and (β0, β1, ..., βk) from the previous exercise,
derive the corresponding priors for (β0, β1, ..., βk).
Assume you have been able to simulate from the posterior of model (2), how can you
then obtain posterior samples from model (1)?

We will now turn to performing simulation from the posterior distibution of (β0, β1, ..., βk)
based on model (1) with priors defined indirectly through (β̃0, β̃1, ..., β̃k) as discussed above.
You can in principle use any method you want for this task, but it will be particularly easy
to use the stan glm routine within the R-library rstanarm. Note in particular that the prior
specifications within stan glm has an option autoscale=TRUE which modifies the priors for
(β0, β1, ..., βk) exactly as described above. In particular, the following command shows an
example of fit using Length and Sex as predictors:
f i t 1 . Bayes <− stan glm(

formula = Ecerv i ˜ Length + Sex , data=DeerEcervi , family = binomial ,
p r i o r = normal (0 , 1 , a u t o s c a l e=TRUE) ,
p r i o r i n t e r c e p t = normal (0 , 5 , a u t o s c a l e=TRUE) ,
seed = 12345 , i t e r =10000)

Note that the prior specifications for the intercept β0 (the prior intercept options) is in-
directly specified through a prior that refers to the prior for β̃0 and similarly for the prior
specifications for βj (the prior option).

For rstan and rstanarm it can also be useful to look at some of the scripts related to
lectures or exercises.

(d). Run a model including only Length as covariate. Try out different variances on the
priors for the βj ’s (e.g increasing the variances by a factor of 10 compared to the
example above).
Also try out priors that are t-distributed. This can be achieved by
f i t <− stan glm(

formula = Ecerv i ˜ Length , data=DeerEcervi , family = binomial ,
p r i o r = student t ( df =3 ,0 , 1 , a u t o s c a l e = TRUE) ,
p r i o r i n t e r c e p t = student t ( df =3 ,0 , 5 , a u t o s c a l e = TRUE) ,
seed = 12345 , i t e r =10000 , r e f r e s h =0)

(The option refresh=0 will suppress a lot of outputs when running stan glm.)
Summarize the results by comparing posterior credibility intervals for the parameters.
Comment on similarities/discrepancies.
Hint: If you are using stan glm, the function posterior interval can be applied on
the fitted object.

(e). Run another model using Sex as an additional covariate using the command
f i t <− stan glm(

formula = Ecerv i ˜ Length+Sex , data=DeerEcervi , family = binomial ,
p r i o r = normal (0 , 1 , a u t o s c a l e = TRUE) ,
p r i o r i n t e r c e p t = normal (0 , 5 , a u t o s c a l e = TRUE) ,
seed = 12345 , i t e r =10000 , r e f r e s h =0)

Compare the results with the model considered in (d).
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Summarize the results through plots of posterior densities and credibility intervals for
the parameters.
Hint: If you are using stan glm, the functions posterior intervals, pairs, plot can
be applied on the fitted object. Further, the command
samp1 = as . matrix ( f i t 2 . Bayes )

can be used for extracting the samples.

(f). Compare the two models using both the WAIC criterion and leave-one-out estimates
of the log-predictive power. Look in particular at the estimated effective number of
parameters and discuss whether the estimate is reasonable or not. Also compare with
the AIC/BIC results you obtained earlier. Summarize your results.
Hint: If you are using stan glm, the commands waic and loo are useful (the latter
within the loo library).

Exercise 2 (Deer data - continued). In the previous exercise we did not include Farm in the
Bayesian version of the model. We will now consider a model of the form

yf,i ∼Bernoulli(pf,i), f = 1, ..., F, i = 1, ..., nf ;

logit(pf,i) =ηf,i = β0 +
k∑
j=1

βjxf,i,j + bf , bf ∼ N(0, τ2
b ).

(3)

We now have changed notation somewhat in that yf,i is observation number i within farm f .
For the Deer data, F = 24 while nf varies from 1 to 209.

In the model above we have introduced {bf}. Instead of assuming these to be fixed
parameters, we assume these to be random effects with bf ∼ N(0, τ2

b ). We will further add a
prior on τ2

b in addition to priors for the other parameters involved.

(a). Discuss differences in defining the bf ’s to be random effects compared to being fixed
parameters in a Bayesian setting.
Also discuss why there is no need to include an expectation parameter for the bf variables
for the given model.
Why can this model be considered as having a farm-specific intercept?

(b). Assume you want to perform predictions on a new farm. Discuss advantages of consid-
ering bf as random compared to fixed in this case.

(c). Define b = (b1, ..., bF ).

(i) Make a graph describing the whole model. Show that given bmodel (3) corresponds
to an ordinary logistic regression model.

(ii) Show that given β and τb we have

p(b|β, τb,y) =
F∏
f=1

p(bf |β, τb,yf )

where yf are the observations from farm f . Show further that also each p(bf |β, τb,yf )
correspond to an ordinary logistic regression model (or even a simplification of
that).
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(iii) Show that p(τ2
b |b, ...) = p(τ2

b |b) where ... is all other information.

Based on the results above, describe (verbally) how an MCMC sampler can be con-
structed for simulation from the posterior distribution based on model (3) combined
with the priors involved.

It is possible to implement an MCMC algorithm which performs simulation from the setting
above. Luckily, the rstanarm library in R also has a routine, stan glmer, for this kind of
model. The following call includes the {bf} random terms:
f i t . glmer <− stan glmer (

formula = Ecerv i ˜ Length+Sex +(1 |Farm ) ,
data=,DeerEcervi , family=binomial ,
p r i o r = normal (0 , 1 , a u t o s c a l e = TRUE) ,
p r i o r i n t e r c e p t = normal (0 , 5 , a u t o s c a l e = TRUE) ,
p r i o r covar iance=decov ( scale =0.1 , shape =0.1) ,
seed = 12345 , i t e r =10000)

The prior covariance=decov(scale=0.1,shape=0.1) specifies the prior for τb in this case,
a Gamma prior with scale and shape parameters both equal to 0.1.

(d). Simulate from the posterior distribution for the model described above, preferable using
the stan glmer routine above. Compare this model with previous models using similar
criteria as before.
Note: This call will take some time.

(e). Consider ways of generalizing the model by making (some of) the regression coefficients
also farm-specific. Look at the help page for the stan glmer routine to see how you
can do anlysis in this case. Compare again with earlier models.

Exercise 3 (Priors for categorical covariates). In the data that we have considered there are
several categorical covariates. Categorical covariates can be problematic due to that many
equivalent parametrisations can be used. Consider the specific case where we include only
Length and Sex as covariates (with the latter being categorical). We then have two possible
parametrisations:

ηi =β0 + β1 ∗ Lengthi + β2 ∗ SexFi

where SexFi is one for Female and zero otherwise, and

η̃i =β̃1 ∗ Lengthi + β̃2 ∗ SexFi + β̃3 ∗ SexMi

where SexMi is one for Male and zero otherwise

(a). If we want to force that ηi = η̃i, what relationships do we then have between (β0, β1, β2)
and (β̃1, β̃2, β̃3)?

(b). The two parametrisations can be fit in a frequentist setting by
f i t 1<−glm( Ecerv i ˜ Length + Sex , data = DeerEcervi , family = binomial )
f i t 2<−glm( Ecerv i ˜ Length + Sex−1, data = DeerEcervi , family = binomial )
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Try out these two fits and convince yourself on that you get equivalent results both with
respect to AIC and fitted values.

Bayesian approaches are a bit more problematic in this case. Assume now that we assume a
prior

β0 ∼N(0, τ2
0 )

βj ∼N(0, τ2
β), j > 0

β̃j ∼N(0, τ2
β), j > 0

(c). Show that the two different parametrisations in general leads to different priors for ηi
and η̃i in this case.
What requirements are needed for the priors to be equivalent?

(d). Try out the following commands and comment on the results related to the points above:
f i t 1 <− stan glm(

formula = Ecerv i ˜ Length+Sex , data=DeerEcervi , family = binomial ,
p r i o r = normal (0 , 1 , a u t o s c a l e = FALSE) ,
p r i o r i n t e r c e p t = normal (0 , 5 , a u t o s c a l e = FALSE) ,
seed = 12345 , i t e r =10000 , r e f r e s h =0)

l 1 = loo ( f i t 1 )
w1 = waic ( f i t 1 )

f i t 2 <− stan glm(
formula = Ecerv i ˜ Length+Sex−1,data=DeerEcervi , family = binomial ,
p r i o r = normal (0 , 1 , a u t o s c a l e = FALSE) ,
p r i o r i n t e r c e p t = normal (0 , 5 , a u t o s c a l e = FALSE) ,
seed = 12345 , i t e r =10000 , r e f r e s h =0)

l 2 = loo ( f i t 2 )
w2 = waic ( f i t 2 )
show( p o s t e r i o r i n t e r v a l ( f i t 1 ) )
show( p o s t e r i o r i n t e r v a l ( f i t 2 ) )
pred1 = predict ( f i t 1 , DeerEcervi )
pred2 = predict ( f i t 2 , DeerEcervi )
plot ( pred1 , pred2 )
abline ( c ( 0 , 1 ) )
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