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Exercise 1: estimating many normal means

Here we shall consider a simple normal prototype setup, first the basic one where we

observe a single y which given θ comes from a N(θ, 1) distribution.

(a) The classic estimator for the mean parameter is of course θ̂c = y itself. Find its risk

function, under squared error loss, i.e. rc(θ) = Eθ (y − θ)2.

(b) Then assume the prior distribution θ ∼ N(0, σ2), with σ given. Show that the joint

distribution, for the parameter and the data point, is the binormal(
θ
y

)
∼ N2(

(
0
0

)
,

(
σ2 σ2

σ2 σ2 + 1

)
).

– I do not wish you to spend too many exam minutes on this point, so it is suffi-

cient that you explicitly find the means, the variances, and the covariance (then joint

binormality follows via a few extra arguments).

(c) You are not required to show this here and now, but it is an easy task to deduce from

the joint distribution above that

θ | y ∼ N(ρy, ρ), with ρ =
σ2

σ2 + 1
.

But show that the posterior mean estimator (i.e. the Bayes estimator under quadratic

loss), is θ̂B = ρy, and find its risk function rB(θ). Find also the interval of θ inside

which the Bayes risk function is smaller than the classic risk function.

(d) Assume now that there are independent normal observations y1, . . . , y100 of the above

type, with different mean parameters and variances known to be 1, i.e. yi | θi ∼

N(θi, 1). If one uses the same prior for all these mean parameters, with θ1, . . . , θ100

being independent from N(0, σ2), then the recipe above leads to

θ̂i = E(θi | yi) = ρyi =
σ2

σ2 + 1
yi for i = 1, . . . , 100.

This requires σ to be known, however, which is most often not realistic. Construct

therefore a new estimator, of the type

θ∗i = ρ̂yi for i = 1, . . . , 100,

where you propose a way of estimating ρ from the hundred observations.
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Exercise 2: count me in

Certain count variables y follow the distribution given by

f(y, θ) = Pr(Y = y | θ) = (y − 1)(1− θ)y−2θ2 for y = 2, 3, 4, . . . ,

where θ is a parameter in (0, 1). You do need to show this here, but with a bit of patience

one can show that

E (y | θ) =
2

θ
, Var (y | θ) =

2(1− θ)

θ2
.

(a) Assume first, in the spirit of Bayes’s 1763 essay, that not knowing θ is formalised

as meaning that it stems from a uniform distribution on (0, 1). Find the posterior

distribution θ | y.

(b) Still taking θ to have a uniform prior, find also the implied marginal distribution

for y, i.e. a formula for Pr(Y = y) for y = 2, 3, 4, . . .. Find the mean EY for this

distribution.

(c) Suppose now that independent count data y1, . . . , yn are observed from the model

f(y, θ), with the same θ. Write down the likelihood function, and show that the max-

imum likelihood estimator is θ̂ml = 2/ȳ, in terms of the data mean ȳ = (1/n)
∑n

i=1
yi.

(d) With any given smooth prior for θ, explain what the so-called Lazy Bayes posterior

distribution is here, based on a normal approximation.

(e) Regardless of such a normal approximation to a given posterior distribution, assume

now that the prior for θ is a Beta(a, b) (see the Appendix). Find the exact posterior

distribution for θ, and show that

E (θ | data) =
a+ 2n

a+ b+ nȳ
.

(f) Suppose that ten data points

3, 7, 4, 6, 9, 23, 10, 13, 8, 7

have been observed, and that the uniform prior is used for θ. What is then the

distribution of the eleventh data point, not yet observed? The task is to find a formula

for Pr(Y11 = y | y1, . . . , y10), for y = 2, 3, 4, . . ..

Exercise 3: are you Type 1, or are you Type 2?

A rather simplified setup for statistical pattern recognition (classification analysis,

discriminant analysis) is as follows. There are only two classes, 1 and 2, and a single

observation y, coming from density f1(y) if from class 1, and density f2(y) if from class 2.

The task is to classify y as coming from class 1 or class 2. The y can be multidimensional,

or a sequence, or an image (is it a cat?, is it a dog?), without disturbing the basic setup

here.
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Suppose here that the two classes are equally likely a priori (if you need notation,

take π1 = 1

2
, π2 = 1

2
), and that f1(y) and f2(y) are completely specified, so there is only

one unknown parameter in the game, namely the class label c ∈ {1, 2}. Suppose further

that the statistician is to reach a decision ĉ, for the observed y, with three possibilities,

{1, 2, D}. Here ĉ = 1 means that one claims y is of type 1, similarly for ĉ = 2, whereas

decision D means one is in doubt, perhaps to be followed by further inspection, another

measurement for the same object, or the like. The loss function is here taken to be

L(c, ĉ) =

{
0 if correct,
1 if wrong,
0.10 if D.

(a) Show first that

Pr(c = 1 | y) =
f1(y)

f1(y) + f2(y)
=

1

1 +R(y)
,

Pr(c = 2 | y) =
f2(y)

f1(y) + f2(y)
=

R(y)

1 +R(y)
,

with R(y) = f2(y)/f1(y).

(b) Show next that
E (L(c, 1) | y) = 1− Pr(c = 1 | y),

E (L(c, 2) | y) = 1− Pr(c = 2 | y).

(c) Then show that the Bayes solution to the classification problem is

claim 1 if Pr(c = 1 | y) ≥ 0.90,

claim 2 if Pr(c = 2 | y) ≥ 0.90,

use D if both Pr(c = 1 | y) < 0.90 and Pr(c = 2 | y) < 0.90.

In which precise sense is this the optimal procedure?

(d) As an illustration of the general setup here, suppose that y is one-dimensional, with

f1(y) being N(−1, 1) and f2(y) being N(1, 1). Identify the three regions of y, where

one claims 1, claims 2, or uses the D option.

Exercise 4: ratio of Cauchy parameters

Consider the two simple datasets

data 1: 0.158, 0.716, 3.722, 6.240, 7.632

data 2: −0.636, 1.846, 3.461, 4.954, 8.182

We assume here that these are ordered independent samples from two different Cauchy

models, with parameters θ1 and θ2, i.e. with densities

f(y, θ1) =
1

π

1

1 + (y − θ1)2
and f(y, θ2) =

1

π

1

1 + (y − θ2)2

on the real line. I have plotted the two consequent log-likelihood functions, say ℓ1(θ1)

(smooth black) and ℓ2(θ2) (dashed red), in the figure below, from zero and upwards.
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The two log-likelihood functions, ℓ1(θ1) (black, full) and ℓ2(θ2) (red,

dashed), for the two small Cauchy datasets.

(a) Here we’re Bayesians, and use a flat prior on [0, 100] for both θ1 and θ2. Write

down expressions for the posterior distributions of θ1 and θ2, say π1(θ1 | data1) and

π2(θ2 | data2), and explain how you would compute these (when given time to actually

do so, after the exam).

(b) Then explain how you would go about sampling a high number of θ1 and θ2 from their

respective posterior distributions.

(c) Finally explain how you can make Bayesian inference for the ratio parameter ρ =

θ2/θ1.
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Appendix: A few facts for the Beta distribution

We say that X is a Beta distribution with parameters (a, b), these being positive, provided

its density is

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for x ∈ (0, 1).

Here Γ(·) is the gamma function. In particular,

∫
1

0

xa−1(1− x)b−1 dx =
Γ(a)Γ(b)

Γ(a+ b)
,

and it also follows from this that

∫
1

0

xm(1− x)n dx =
m!n!

(m+ n+ 1)!

when m and n are integers. Furthermore,

EX = x0 =
a

a+ b
and VarX =

x0(1− x0)

a+ b+ 1
.

One may also find use for the inverse mean, which is

E
1

X
=

a+ b− 1

a− 1
for a > 1.
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