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Compulsory for STK4021/9021 -
Applied Bayesian Analysis
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Submission deadline

Thursday November 3 2022, 14:30 in Canvas (canvas.uio.no).

Instructions

Note that you have one attempt to pass the assignment. This means that there are no
second attempts.
You can choose between scanning handwritten notes or typing the solution directly on a
computer (for instance with LATEX). The assignment must be submitted as a single PDF
file. Scanned pages must be clearly legible. The submission must contain your name, course
and assignment number.
It is expected that you give a clear presentation with all necessary explanations. Remember
to include all relevant plots and figures. All aids, including collaboration, are allowed, but
the submission must be written by you and reflect your understanding of the subject. If we
doubt that you have understood the content you have handed in, we may request that you
give an oral account.
In exercises where you are asked to write a computer program, you need to hand in the
code along with the rest of the assignment. It is important that the submitted program
contains a trial run, so that it is easy to see the result of the code.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to illness or other
reasons, you have to contact the Student Administration at the Department of Mathematics
(e-mail: studieinfo@math.uio.no) no later than the same day as the deadline.
All mandatory assignments in this course must be approved in the same semester, before
you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

https://canvas.uio.no
mailto:studieinfo@math.uio.no
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html


Spesific requirements to this assignment:

In order to get the assignment accepted you need to fullfil the following requirements:

• Include plots and code you have used as appendices to your report.

• A real attempt on all (sub-)questions.

• A satisfactory answer in at least 2/3 of the (sub-)questions.

Remember that it is allowed both to collaborate and to ask for help!
Within the exercises several commands that can be used in R are included. If some libraries
are not available at your computer, you need to install them, for example by
i n s t a l l . packages ( " r s tan " )

If you struggle with
It is allowed to use other programs, but there will then be extra requirements to good
documentation on what you have done and you can not expect to obtain help with respect
to implementional details.

GOOD LUCK!



Exercise 1 (Dental data). Investigators at the University of North Carolina Dental School
followed the growth of 27 children (16 males, 11 females) from age 8 until age 14. Every two
years they measured the distance between the pituitary and the pterygomaxillary fissure,
two points that are easily identified on x-ray exposures of the side of the head.

The data are available on the file orthodont.txt and can be read into R and
summarized through the commands
coursedir = "https://www.uio.no/studier/emner/matnat/math/STK4021"
d = read.table(paste(coursedir,"/data/orthodont.txt",sep=""),header=T)
summary(d)

The following variables are available:

distance a numeric vector of distances from the pituitary to the pterygomaxillary fissure
(mm). These distances are measured on x-ray images of the skull.

age a numeric vector of ages of the subject (yr).

Subject an ordered factor indicating the subject on which the measurement was made.
The levels are labelled M01 to M16 for the males and F01 to F13 for the females.
The ordering is by increasing average distance within sex.

We will in this exercise consider prediction of the variable distance based on the available
covariates

a. Start by performing ordinary linear regression considering the following three different
models:
fit0 = lm(distance~age+Sex,data=d)
fit1 = lm(distance~age+Sex+Subject,data=d)
fit2 = lm(distance~age+Sex+Subject+age:Subject+Sex:Subject,data=d)
show(AIC(fit0,fit1,fit2))

For each of the commands above, write down the corresponding linear regression
model.
Run the commands and discuss the results you get.

b. We will now turn to a Bayesian approach. First, we will however discuss some issues
with respect to priors and scaling. Consider the general linear regression model

yi = β0 +
k∑
j=1

βjxj,i + σεi, ε ∼ N(0, 1) (1)

Define s2
y = 1

n−1
∑n
i=1(yi − ȳ)2 and s2

x,j = 1
n−1

∑n
i=1(xj,i − x̄j)2. Consider further the

standardizations

ỹi = yi
sy
, x̃j,i = xj,i

sx,j
, j = 1, ..., k.
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Show that the linear regression model can be rewritten to

ỹi = β̃0 +
k∑
j=1

β̃jx̃j,i + σ̃εi, ε ∼ N(0, 1) (2)

for appropriate definitions of β̃0, β̃j and σ̃.
Argue why it should be easier to define some default priors for (β̃0, β̃1, ..., β̃k, σ̃)
compared to (β0, β1, ..., βk, σ).

c. Assume now independent priors for the parameters involved and

p(β̃0) =N(0, τ 2
0 );

p(β̃j) =N(0, τ 2
β);

p(σ̃2) =Inv-Gamma(a, b).

With the relations between (β̃0, β̃1, ..., β̃k, σ̃) and (β0, β1, ..., βk, σ) from the previous
exercise, derive the corresponding priors for (β0, β1, ..., βk, σ).

d. Assume you have been able to simulate from the posterior of model (2), how can you
then obtain posterior samples from model (1)?

We will now turn to performing simulation from the posterior distibution of (β0, β1, ..., βk, σ)
based on model (1) with priors defined indirectly through (β̃0, β̃1, ..., β̃k, σ̃) as discussed
above. You can in principle use any method you want for this task, but it will be particularly
easy to use the stan_glm routine within the R-library rstanarm. Note in particular that
the prior specifications within stan_glm has an option autoscale=TRUE which modifies
the priors for (β0, β1, ..., βk, σ) exactly as described above. In particular, the following
command shows an example of fit using only age as predictor:
fit0.Bayes <- stan_glm(
formula = distance~age,data=d,
prior = normal(0, 2.5, autoscale = TRUE),
prior_intercept = normal(0, 10, autoscale = TRUE),
seed = 12345,iter=10000)

Note that the prior specifications for the intercept β0 (the prior_intercept options) is
indirectly specified through a prior that refers to the prior for β̃0 and similarly for the prior
specifications for βj (the prior option). A default prior specification for σ is used here
(which can be modified by an addtional option prior_aux, help(stan_glm) provide more
details if of interest).

For rstan and rstanarm it can also be useful to look at some of the scripts related to
lectures or exercises.

e. Run a model including only age and another model using also Sex as covariate(s).
Summarize the results through plots of posterior densities and credibility intervals for
the parameters.
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Hint: If you are using stan_glm, the functions posterior_interval, pairs, plot
can be applied on the fitted object. Further, the command
samp0 = as.matrix(fit0.Bayes)

can be used for extracting the samples.

f. Compare the two models using both the WAIC criterion and leave-one-out estimates
of the log-predictive power. Look in particular at the estimated effective number of
parameters and discuss whether the estimate is reasonable or not. Also compare with
the AIC/BIC results you obtained earlier. Summarize your results.
Note: This exercise will be based on topics that still is not covered as of October 12,
but will be discussed in the following weeks.
Hint: If you are using stan_glm, the commands waic and loo are useful (the latter
within the loo library.

Exercise 2 (Dental data - continued). In the previous exercise we did not include Subject
in the Bayesian version of the model. This is partly due to that when trying this out with
e.g. stan_glm it runs extremely slowly, but also is due to that there is a more reasonable
way to include Subject into the model. In particular we will consider a model of the form

ys,i = β0 +
k∑
j=1

βjxs,i,j + bs + εs,i, εs,i ∼ N(0, σ2), bs ∼ N(0, τ 2
b ) (3)

for s = 1, ..., S, i = 1, ..., ns. We now have changed notation somewhat in that ys,i is
observation number i for subject s. For the dental data, S = 27 and ns = 4 for all s.

In the model above we have introduced {bs}. Instead of assuming these to be fixed
parameters, we assume these to be random effects with bs ∼ N(0, τ 2

b ). We will further add
a prior on τ 2

b in addition to priors for the other parameters involved.

a. Discuss differences in defining the bs’s to be random effects compared to being fixed
parameters in a Bayesian setting.
Aslo discuss why there is no need to include an expectation parameter for the bs
variables for the given model.
Why can this model be considered as having a subject-specific intercept?

b. Assume you want to perform predictions on a new subject. Discuss advantages of
considering bs as random compared to fixed in this case.

c. Assume both σ2 and τ 2
b are known. Assume further all βj’s are zero-mean Gaussians

with known variances as well. Derive the marginal distributions for ys,i and also the
correlations between ys,i and ys′,i′ both for s = s′ and s 6= s′.

d. Define b = (b1, ..., bS).
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a) Make a graph describing the whole model. Show that given b model (3)
corresponds to an ordinary linear regression model.

b) Show that p(b|β0,β, σ
2, τ 2

b ,y) becomes a normal distribution. You do not need
to explicitly derive the mean and covariance matrix, but argue why it has to be
so.

c) Show that p(τ 2
b |b, ...) = p(τ 2

b |b) where ... is all other information.

Based on the results above, describe (verbally) how an MCMC sampler can be
constructed for simulation from the posterior distribution based on model (3) combined
with the priors involved.

It is possible to implement an MCMC algorithm which performs simulation from the setting
above. Luckily, the rstanarm library in R also has a routine, stan_glmer, for this kind of
model. The following call includes the {bs} random terms:
fit.glmer.Bayes <- stan_glmer(

formula = distance~age+Sex+(1|Subject),data=d,
prior = normal(0, 2.5, autoscale = TRUE),
prior_intercept = normal(0, 10, autoscale = TRUE),
seed = 12345,iter=10000)

e. Simulate from the posterior distribution for the model described above, preferable
using the stan_glmer routine above. Compare this model with previous models
using similar criteria as before.

f. Consider ways of generalizing the model by making (some of) the regression coefficients
also subject-specific. Look at the help page for the stan_glmer routine to see how
you can do anlysis in this case. Compare again with earlier models.

Exercise 3 (Non-negative response). In the analyses made in the previous exercises, we
have not taken into account that the response variable is strictly positive. This probably
does not cause serious problems for the specific problem due to that range of the response
values is far from zero. However, it can be of interest to consider other options where this
constraint is taken into account.

a. One possibility is to consider a Gamma distribution on the response as an alternative
to the Gaussian distribution assumed earlier. Modifying this in the calls to stan_glm
or stan_glmer earlier is actually quite easy in that you only need to include an
option family=Gamma(). Try this out using the same model structure as the best
model you chose earlier and make comparisions based on WAIC and leave-one-out
cross-validation. How does this new model do?
In case your model includes random effects, look also at the estimated number of
effective parameters in this case. Try to understand the differences.
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b. Another alternative is to consider a log-transform on the response. Also try this out
and make similar comparisions.
Warning: Note that both WAIC and leave-one-out cross-validation is trying to
estimate log-predictive densities. Such densities are not directly comparable when
you now have transformed your response variable . Discuss how you can modify the
computations within this new model to make them comparable.
Hint: In the output of the loo function there is an object called pointwise which
give the pointwise predictive log-densities for each observation.
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