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Preamble

These notes will accompany the course STK4021 on Applied Bayesian Analysis for the autumn

semester of 2023. They are largely self-contained, except with regards to solutions to exercises and

coding examples, which will be covered in lectures. I advise you to read ahead in the notes before

lectures - in that way the material will be more easily digestible. Most of the exercises are taken

from Professor Nils Lid Hjort’s lecture notes from previous years (available on the course website),

or from relevant textbook sources (cited at the beginning of chapter if relevant). Although the

lecture notes will cover all the material we need, it is of course possible to look for further reading

and challenges in said sources.

If you have any questions about the material or would like to notify me about errors in the notes,

please reach out via email: dennis.christensen@ffi.no

A note on notation

In previous statistics courses, your teachers have probably been consistent in using uppercase letters

(like X, Y, Z) for random variables and lowercase letters (like x, y, z) for deterministic variables. In

Bayesian statistics, the notation tends to be more sloppy, and we mostly use lowercase letters for

everything, unless it is really important to separate between random and deterministic variables.

Furthermore, introductory courses in statistics tend to have really precise notation with regards

to probability density functions, writing for example fX|Y=y(x) for the density of X given that

Y = y. In Bayesian statistics, we instead use a single letter π (or sometimes p) for every density,

and let the argument of the function explain which density is referred to. For example, the density

above would simply be written as π(x | y). It will usually be clear from context which random

variables are in play.

For common probability distributions, we will include an argument to indicate that we are referring

to the density. For example, y ∼ N(µ, σ2) will mean that y is normally distributed with mean µ

and variance σ2, but

N(y;µ, σ2) =
1√
2πσ

exp

{
− 1

2σ2
(y − µ)2

}
is the density of a N(µ, σ2) distribution, evaluated at y.
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1 The Bayesian pipeline

1.1 Introduction

Prior and posterior distributions

This is a course on Bayesian statistics, which is one of the main paradigms of mathematical

statistics. Loosely speaking, if we were to summarise the Bayesian way of thinking in a single

phrase, it might be that “every unknown quantity is treated as a random variable.” So, let θ ∈ Θ

be some unknown quantity that we care about, living in a parameter space Θ. We assign a

probability distribution to θ, say π(θ). This is called the prior distribution of θ, since we choose

it before having observed any data. It reflects our prior beliefs. In most cases, π(θ) is interpreted

as a density, so that

P(θ ∈ A) =

∫
A

π(θ) dθ.

We assume that the parameter θ governs some observable process from the real world. Thus,

we observe data y = (y1, . . . , yn) ∈ Y , in some data space Y . Here, each observed yi may itself

be multidimensional, and y is the collection of all the data. For example, if each yi ∈ R3 is

a three-dimensional vector, then Y = R3×n. We model the data y using the model’s likelihood

function π(y | θ). Note that we condition on θ, since θ is treated as an unknown parameter of the

distribution π(y | θ). If the yi are conditionally independent given θ, then we can write

π(y | θ) =
n∏

i=1

π(yi | θ).

Having observed the data y, the key question for the Bayesian statistician is: How have our beliefs

about θ changed? Since we have observed data, we have gained new information, and we thus need

to update our beliefs about θ accordingly. That is, we need to find the distribution of θ given the

data. Mathematically, we want to find π(θ | y), the posterior distribution. By Bayes’ theorem,

π(θ | y) = π(y | θ)π(θ)
π(y)

. (1.1)

Let us break down (1.1) term by term so that we make sure we understand it fully. We have

already seen two of the terms on the right hand side, namely the prior π(θ) and the likelihood

π(y | θ). The term in the denominator is called the marginal likelihood, and can also be written as

π(y) =

∫
Θ

π(y | θ′)π(θ′) dθ′. (1.2)

Combining (1.1) and (1.2), we get

π(θ | y) = π(y | θ)π(θ)∫
Θ
π(y | θ′)π(θ′) dθ′

, (1.3)

which shows that the posterior distribution is entirely determined by the prior π(θ) and the likeli-

hood π(y | θ). In other words, the inferential pipeline only depends on the choice of prior and the

choice of likelihood. For this reason, when we refer to a model in Bayesian statistics, we mean the

choice of a prior distribution and a likelihood for the data.
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Exercise 1. Verify relation (1.2).

Posterior mean and variance

Once we have calculated the posterior distribution π(θ | y), we are usually interested in inves-

tigating the behaviour of θ in the posterior by, for example, calculating the posterior mean and

variance. These are given by

E[θ | y] =
∫
Θ

θπ(θ | y) dθ, (1.4)

Var(θ | y) = E[(θ − E[θ | y])2 | y] = E[θ2 | y]− E[θ | y]2. (1.5)

Exercise 2. Verify relation (1.5).

Exercise 3 (Based on Nils Lid Hjort’s exercises, #1). This exercise illustrates the basic prior to

posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution. We say

that Z ∼ Gamma(a, b) if its density is

g(z; a, b) =
ba

Γ(a)
za−1 exp(−bz) on (0,∞).

Here a and b are positive parameters. Show that

E[Z] =
a

b
, Var(Z) =

a

b2
=

E[Z]
b

.

In particular, low and high values of b signify high and low variability, respectively.

(b) Now suppose y | θ is a Poisson with parameter θ, and that θ has the prior distribution

Gamma(a, b). Show that θ | y ∼ Gamma(a+ y, b+ 1).

(c) Then suppose there are repeated Poisson observations y1, . . . , yn, being iid ∼ Poisson(θ) for

given θ. Use the above result repeatedly, e.g. interpreting π(θ | y1) as the new prior before

observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gamma(a+ y1 + · · ·+ yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gamma(0.1, 0.1) and that the Poisson data are 6, 8, 7,

6, 7, 4, 11, 8, 6, 3. Plot the ten curves π(θ | y1, . . . , yj) (j = 1, . . . , 10), along with the prior

density π(θ). Also compute the ten Bayes estimates θ̂j = E[θ | y1, . . . , yj] and the posterior

standard deviations, for j = 0, . . . , 10.
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(e) The mathematics turned out to be rather uncomplicated in this situation, since the Gamma

continuous density matches the Poisson discrete density so nicely. Suppose instead that the

initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior distributions, posterior

means and posterior standard deviations also in this case, and compare with what you found

above.

Solution.

(b) This exercise can be solved directly by applying Bayes’ theorem directly, but we shall use a

key trick known as the normalisation trick, or the functional form trick. Note that in Bayes

theorem, the marginal likelihood π(y) does not depend on θ. Thus, it merely serves as a

normalisation constant, to make sure the right hand side integrates to unity. Therefore, if

we recognise the functional form of the product π(y | θ)π(θ), we can ignore the marginal

likelihood π(y) when deriving the posterior distribution. In this particular exercise, we have

π(y | θ) = θy exp(−θ)
y!

,

and so with the Gamma prior, we have, as a function of θ,

π(θ | y) ∝ π(y | θ)π(θ) ∝ θy exp(−θ)× θa−1 exp(−bθ) = θa+y−1 exp(−(b+ 1)θ).

Here, the symbol ∝means “is proportional to”, and we have ignored all factors not depending

on θ. Now, we see that our answer is of the same functional form as the Gamma density

g(θ; a + y, b + 1). Since we know π(θ | y) has to integrate to unity, we do not have to work

out what the normalisation constant is. The normalisation forces π(θ | y) = g(θ; a+y, b+1).

We thus conclude that θ | y ∼ Gamma(a+ y, b+ 1). There is no other option.

The previous exercise introduced the key idea of the normalisation trick, the main idea behind

which is to treat the marginal likelihood π(y) as a normalisation constant. The trick only works if

we are able to recognise the functional form of the product π(y | θ)π(θ), which may not always be

the case. However, when it works, the trick yields yet another interpretation of Bayes’ theorem,

namely

π(θ | y) ∝ π(y | θ)π(θ), (1.6)

which is useful to keep in mind, in some cases. Phrased in words, we have

Posterior ∝ Likelihood× Prior, (1.7)

the simplest summary of the Bayesian inferential pipeline.

The predictive distribution

In many applications, we are not merely interested in the posterior distribution π(θ | y), but also in
the predictive distribution of the next observation. Assume that, conditioned on θ, the observations

y1, . . . , yn are iid (independent and identically distributed), and that we observe a new data point
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yn+1 from the same model. What is the distribution of yn+1, given the data y = (y1, . . . , yn)? We

have

π(yn+1 | y) =
∫
Θ

π(yn+1 | θ)π(θ | y) dθ, (1.8)

so, in principle, we can work out the predictive distribution if we know the posterior π(θ | y) and
the single-observation likelihood π(yn+1 | θ).

Exercise 4. Verify relation (1.8). What happens here if n = 0 (so y = ∅)?

Exercise 5. The two statisticians Alice and Bob want to predict the probability of the sun rising

tomorrow. Alice is a frequentist, whilst Bob is a Bayesian. They let y1, . . . , yn ∈ {0, 1} be binary

variables indicating whether a sunrise occurred for each day i = 1, . . . , n. Since the earth is

4.543 × 109 years old, we have that n = 365 × 4.543 × 109 = 1.658195 × 1012. Since the sun has

risen every day, we have that yi = 1 for each i = 1, . . . , n. Both Alice and Bob assume that the

sunrises are independent, and that the probability of any particular sunrise occurring on a given

day is a Bernoulli random variable with parameter θ ∈ [0, 1], so that the probability mass function

(pmf) for each yi is π(yi | θ) = θyi(1− θ)1−yi .

(a) As a frequentist, Alice uses maximum likelihood theory to estimate θ. What does she find?

(b) Bob, on the other hand, is a Bayesian statistician, and so assigns a prior distribution to θ.

As a simple choice, he chooses the uniform distribution, so π(θ) = 1 for 0 ≤ θ ≤ 1, zero

otherwise. Given the data, what is the posterior distribution π(θ | y)?

(c) Calculate the posterior mean E[θ | y] and the posterior variance Var(θ | y). What happens

as n→∞?

(d) What is the predictive probability that the sun will rise tomorrow, P(yn+1 = 1 | y)?

(e) Verify the answer you got in point (c) via Monte Carlo simulations, but with a smaller value

of n, say n = 14.

1.2 Bayesian decision theory

For a thorough treatment of this topic see Robert (2001, Chapter 2)

An important application of Bayesian analysis is decision theory, which is the study of how to take

the optimal action based on given information. In addition to the setup we have established so

far, we also need to consider different actions. Mathematically, we say that a decision function

is a function a : Y → A, mapping the data y to some action a(y), living in a suitable action

space A. The action a(y) could be a number (a statistical estimate, how much money we should

gamble, etc), or a binary decision (implement policy versus do not implement policy), or generally

something else entirely.

In order to determine how good a given action is, we choose a loss function L : Θ×A → [0,∞).

This will return a low value if a(y) is a good action, and a high value otherwise.
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The loss function L(θ, a(y)) evaluates the quality of the action a(y) for a specific realisation of the

data y. In order to evaluate the quality of the decision function a over all such realisations, we

have the frequentist risk

R(a, θ) =

∫
Y
L(θ, a(y))π(y | θ) dy.

However, as Bayesians, we can also marginalise out θ, yielding the Bayes risk

BR(a) =

∫
Θ

R(a, θ)π(θ) dθ =

∫
Θ

∫
Y
L(θ, a(y))π(y | θ) dy π(θ) dθ. (1.9)

Our goal as Bayesians is to minimise the Bayes risk. That is, to find the optimal decision function

a⋆ satisfying

a⋆ = argmin
a

BR(a).

In settings where a is an estimator, a⋆ is called the Bayes estimator. A priori, it seems difficult to

actually compute a⋆, since we have to minimise the double integral (1.9). However, it turns out

that we can work with a much simpler expression, which can be minimised pointwise. We define

the posterior expected loss as

ρ(a | y) =
∫
Θ

L(θ, a(y))π(θ | y) dθ. (1.10)

We then have the following useful result.

Theorem 1.1. The minimiser a⋆ of the Bayes risk is precisely the decision function which min-

imises the posterior expected loss for each y. That is,

a⋆(y) = argmin
α

∫
Θ

L(θ, α)π(θ | y) dθ. (1.11)

The value of this theorem is that (1.11) is a much easier minimisation problem, as we shall see in

examples and exercises.

The theorem also tells us that once we have chosen a prior, a likelihood and a loss function, the

Bayes estimator is uniquely determined. So in the real world, if our policy makers wants us to

calculate the optimal action to take, we need to know three pieces of information: what is their

prior, what is their likelihood and what is their loss function? Once we know all three, there is a

unique optimal action to take based on the observed data.

Exercise 6. Let θ ∈ R. Given the loss function L(θ, a) = (a− θ)2, show that the Bayes estimator

is the posterior mean, E[θ | y].

Sometimes we come across exercises or problems which simply state “find the Bayes estimator”.

Technically speaking, this is not a well-defined question, since the Bayes estimator depends on the

choice of loss function. However, in cases in which no loss function is specified, it is implicitly

assumed that we are working with the quadratic loss, and so the Bayes estimator simply means

the posterior mean.
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Exercise 7. Now consider the loss function L(θ, a) = |a− θ|. What is the Bayes estimator?

Exercise 8. Prove Theorem 1.1. Hint: Use Fubini’s Theorem.

Exercise 9 (Based on Nils Lid Hjort’s exercises, #4). A prototype normal mean model is the

simple one with a single observation y ∼ N(θ, 1). We let the loss function be squared error,

L(θ, a) = (a− θ)2.

(a) Show that the maximum likelihood solution is simply θ∗ = y. Show that its risk function is

R(θ⋆, θ) = 1, i.e. constant.

(b) Let θ have the prior N(0, τ 2). Show that (θ, y) is binormal, and that θ | y ∼ N(ρy, ρ), with

ρ = τ 2/(τ 2 + 1). In particular, θ̂B(y) = ρy is the Bayes estimator.

(c) Find the risk function for the Bayes estimator, and identify where it is smaller than that of

the maximum likelihood solution, and where it is larger. Comment on the situation where τ

is small (and hence ρ), as well as on the case of τ being big (and hence ρ close to 1).

(d) Show that the minimal Bayes risk for the prior N(0, τ 2) is ρ = τ 2/(τ 2 + 1).

Exercise 10 (Based on Nils Lid Hjort’s exercises, #5). Let y | θ be a Poisson with mean parameter

θ, which is is to be estimated with weighted squared error loss L(θ, t) = (t− θ)2/θ.

(a) Show that the maximum likelihood estimator is y itself, and that its risk function is the

constant 1.

(b) Consider the prior distribution Gamma(a, b) for θ. Show that E[θ] = a/b and that E[θ−1] =

b/(a− 1) if a > 1, and infinite if a ≤ 1.

(c) Show that θ | y is a Gamma(a+ y, b+ 1), from which follows

E[θ | y] = a+ y

b+ 1
, E[θ−1 | y] = b+ 1

a− 1 + y
.

The latter formula holds if a− 1 + y > 0, which means for all y if a ≥ 1, but care is needed

if a < 1 and y = 0. Show that the Bayes solution is

θ̂ =
a− 1 + y

b+ 1
for all y ≥ 0,

provided a ≥ 1, but that we need the more careful formula

θ̂ =

{
(a− 1 + y)/(b+ 1) if y ≥ 1,

0 if y = 0,

in the case of a < 1.

(d) Taking care of the simplest case a > 1 first, show that the minimal Bayes risk is 1/(b + 1)

for the Gamma prior.
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(e) Show that

E[L(θ, θ̂) | y] =

{
1/(b+ 1) if y ≥ 1,

a/(b+ 1) if y = 0.

Deduce from this a minimum Bayes risk formula also for the case of a < 1:

1

b+ 1

{
1−

(
b

b+ 1

)a}
+

a

b+ 1

(
b

b+ 1

)a

.

2 Choosing the prior distribution

Some of the remarks made here build on Nicholls (2023).

We have worked through quite a few examples of Bayesian inference, and have seen numerous

examples of how the choice of prior distribution affects our analysis. A key question for Bayesian

statisticians is how to choose a prior distribution. This section is meant to provide some general

points to keep in mind for prior elicitation, as well as some standard recipes.

The question of choosing a prior is by no means an exact science, but there are some general points

to keep in mind. Some key points are as follows.

1. Domain expertise. Sometimes we wish to model phenomena from the real world, where

domain experts have well-founded beliefs about the parameters θ based on their knowledge

of the subject. This should be incorporated into our prior distribution π(θ).

2. Interpretation. In some applications some function g(θ) of the parameters has a clear

interpretation. Thus, our prior distribution for θ should yield realistic values of g(θ). Often,

this step requires simulating lots of samples θ from the prior, calculating g(θ) for each one.

3. Key hypothesis. In many applications, we wish to investigate a specific hypothesis about

the parameters θ, and so our prior should be non-informative with respect to this hypothesis.

For example, if θ ∈ [0, 1], and the key hypothesis to investigate is whether θ > 0.99, then a

uniform prior θ ∼ Uniform[0, 1] would be highly informative with respect to this hypothesis.

4. Multiple priors. To investigate how robust our results are with respect to the choice of

prior, it is common to repeat the analysis with different choices of priors. We did this in

exercise 3 (e). In general, different priors will yield the same posterior analysis once we have

gathered enough data (by the Bernstein-von Mises theorem, which we will come back to

later in the course), but if we have little data, the choice of prior may drastically affect our

analysis.

2.1 Conjugate priors

In most of the examples we have seen so far, the prior and posterior distributions were of the same

functional form. For example, in exercise 3, we started with a Gamma prior, and ended up with a

Gamma posterior. This is an example of a conjugate prior. Mathematically speaking, a conjugate
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prior is any prior distribution which is of the same functional form as the likelihood π(y | θ),
thought of as a function of θ.

Exercise 11. This exercise introduces the binomial distribution, and looks at conjugate priors.

(a) Let y = (y1, . . . , yn), where all the yi are iid Bernoulli variables with parameter θ, with

density

fθ(yi) = θyi(1− θ)1−yi ,

for yi ∈ {0, 1}. Verify that E[yi] = θ and that Var(yi) = θ(1− θ).

(b) Write down the log-likelihood for the full data y and verify that the maximum likelihood

estimator θ̂ for θ is the sample mean.

(c) Now let m be the number of observations with yi = 1. In other words, m =
∑n

i=1 yi, a

sum of independent Bernoulli trials. We know that m follows the Binomial distribution,

m | θ ∼ Binomial(θ, n), with density

fθ(m) =

(
n

m

)
θm(1− θ)n−m,

for m = 0, 1, . . . , n.

Verify that E[m] = θn and Var(m) = θ(1− θ)n.

(d) Now verify that the conjugate prior for θ is the Beta distribution Beta(a, b), with density

π(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1,

where a, b > 0. Show also that

E[θ] =
a

a+ b
, Var(θ) =

ab

(a+ b)2(a+ b+ 1)
.

(e) (Based on Bishop (2006, chapter 2)) Although the Beta prior and the binomial likelihood

clearly share the same functional form as a function of θ, it is less obvious where the nor-

malisation constant in the Beta distribution comes from. In this exercise, we verify that this

normalisation constant is correct. We need to show that∫ 1

0

sa−1(1− s)b−1 ds =
Γ(a)Γ(b)

Γ(a+ b)
,

where we recall the definition of the Gamma function,

Γ(a) =

∫ ∞

0

xa−1e−x dx.

Now, first note that

Γ(a)Γ(b) =

∫ ∞

0

xa−1 exp(−x) dx
∫ ∞

0

yb−1 exp(−y) dy

=

∫ ∞

0

xa−1

(∫ ∞

0

yb−1 exp(−(x+ y)) dy

)
dx.
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Prove the normalisation by first substituting t = y + x (holding x fixed), then change the

order of integration between x and t, and finally make the substitution x = ts (holding t

fixed).

(f) Find the posterior distribution π(θ | m). Show that we can write

E[θ | m] = λE[θ] + (1− λ)θ̂

for some 0 ≤ λ ≤ 1 which you should identify. What happens to E[θ | m] as the number of

observations goes to infinity?

Exercise 12 (Based on Nils Lid Hjort’s exercises, # 13). The Beta-binomial model, with a Beta

distribution for the binomial probability parameter, is on the ‘Nice List’ where the Bayesian

machinery works particularly well: Prior elicitation is easy, as is the updating mechanism. This

exercise concerns the generalisation to the Dirichlet-multinomial model, which is certainly also on

the Nice List and indeed in broad and frequent use for a number of statistical analyses.

(a) Let (y1, . . . , ym) be the count vector associated with n independent experiments having m

different outcomes A1, . . . , Am. In other words, yj is the number of events of type Aj, for

j = 1, . . . ,m. Show that if the vector of P(Aj) = pj is constant across the n independent

experiments, then the probability distribution governing the count data is

f(y1, . . . , ym) =
n!

y1! · · · ym!
py11 · · · pymm ,

for y1 ≥ 0, . . . , ym ≥ 0, y1 + · · · + ym = n. This is the multinomial model. Explain how it

generalises the binomial model.

(b) Show that

EYj = npj, VarYj = npj(1− pj), cov(Yj, Yk) = −npjpk for j ̸= k.

(c) Now define the Dirichlet distribution over m cells with parameters (a1, . . . , am) as having

probability density

π(p1, . . . , pm−1) =
Γ(a1 + · · ·+ am)

Γ(a1) · · ·Γ(am)
pa1−1
1 · · · pam−1−1

m−1 (1− p1 − · · · − pm−1)
am−1,

over the simplex where each pj ≥ 0 and p1 + · · · + pm−1 ≤ 1. Of course we may choose to

write this as

π(p1, . . . , pm−1) ∝ pa1−1
1 · · · pam−1−1

m−1 pam−1
m ,

with pm = 1 − p1 − · · · − pm−1; the point is however that there are only m − 1 unknown

parameters in the model as one knows the mth once one learns the values of the other m−1.

Show that the marginals are Beta distributed,

pj ∼ Beta(aj, a− aj) where a = a1 + · · ·+ am.

11



(d) Infer from this that

E pj = p0,j Var pj =
1

a+ 1
p0,j(1− p0,j),

in terms of aj = ap0,j. Show also that

cov(pj, pk) = −
1

a+ 1
p0,jp0,k for j ̸= k.

For the ‘flat Dirichlet’, with parameters (1, . . . , 1) and prior density (m−1)! over the simplex,

find the means, variances, covariances.

(e) Now for the basic Bayesian updating result. When (p1, . . . , pm) has a Dir(a1, . . . , am) prior,

then, given the multinomial data y = (y1, . . . , ym), show that

(p1, . . . , pm) | y ∼ Dir(a1 + y1, . . . , am + ym).

Give formulae for the posterior means, variances, and covariances. In particular, explain why

p̂j =
aj + yj
a+ n

is a natural Bayes estimate of the unknown pj. Also find an expression for the posterior

standard deviation of the pj.

(f) In order to carry out easy and flexible Bayesian inference for p1, . . . , pm given observed counts

y1, . . . , ym, one needs a recipe for simulating from the Dirichlet distribution. One such is as

follows: Let X1, . . . , Xm be independent with Xj ∼ Gamma(aj, 1) for j = 1, . . . ,m. Then

the ratios

Z1 =
X1

X1 + · · ·+Xm

, . . . , Zm =
Xm

X1 + · · ·+Xm

are in fact Dir(a1, . . . , am). Try to show this from the transformation law for probability

distributions: If X has density f(x), and Z = h(X) is a one-to-one transformation with

inverse X = h−1(Z), then the density of Z is

g(z) = f(h−1(z))

∣∣∣∣∂h−1(z)

∂z

∣∣∣∣
(featuring the determinant of the Jacobian of the transformation). Use in fact this theorem

to find the joint distribution of (Z1, . . . , Zm−1, S), where S = X1 + · · · +Xm (one discovers

that the Dirichlet vector of Zj is independent of their sum S).

(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (p1, . . . , p8) is Dir(a1, . . . , a8),

show that then the collapsed vector (p1 + p2, p3 + p4 + p5, p6, p7 + p8) is Dir(a1 + a2, a3 + a4 +

a5, a6, a7 + a8).

Exercise 13 (Based on Nils Lid Hjort’s exercises, # 14). Gott würfelt nicht, but I do so, on

demand. I throw a certain moderately strange-looking die 30 times and have counts (2, 5, 3, 7, 5, 8)

of outcomes 1, 2, 3, 4, 5, 6.
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(a) Use either of the priors

• ‘flat’, Dir(1, 1, 1, 1, 1, 1),

• ‘symmetric but more confident’, Dir(3, 3, 3, 3, 3, 3),

• ‘unwilling to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

for the probabilities (p1, . . . , p6) to assess the posterior distribution of each of the following quan-

tities:

ρ = p6/p1,

α = (1/6)
6∑

j=1

(pj − 1/6)2,

β = (1/6)
6∑

j=1

|pj − 1/6|,

γ = (p4p5p6)
1/3/(p1p2p3)

1/3.

(b) The above priors are slightly artificial in this context, since they do not allow the explicit

possibility that the die in question is plain boring utterly simply a correct one, i.e. that p = p0 =

(1/6, . . . , 1/6). The priors used hence do not give us the possibility to admit that ok, then, perhaps

ρ = 1, α = 0, β = 0, γ = 1, after all. This motivates using a mixture prior which allows a positive

chance for p = p0. Please therefore redo the Bayesian analysis above, with the same (2, 5, 3, 7, 5, 8)

data, for the prior 1
2
δ(p0) +

1
2
Dir(1, 1, 1, 1, 1, 1). Here δ(p0) is the ‘degenerate prior’ that puts unit

point mass at position p0. Compute in particular the posterior probability that p = p0, and display

the posterior distributions of ρ, α, β, γ.

2.1.1 The multivariate Gaussian distribution

This section largely builds on Bishop (2006, Chapter 2).

A key object of study in statistics is the multivariate Gaussian distribution. As we shall see, this

distribution has some very nice properties, from a Bayesian point of view. The p-dimensional

Gaussian distribution has density

π(x;µ,Σ) =
1

(2π)p/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
, (2.1)

where µ ∈ Rp and Σ is a p× p symmetric positive definite matrix. We write x ∼ N(µ,Σ) if x has

this density.

Exercise 14.

(a) Show that Σ being symmetric is not really a restriction, in the sense that if someone proposes

a quadratic function (x− µ)⊤A−1(x− µ), where A is not necessarily symmetric, there exists

a symmetric matrix Σ such that

(x− µ)⊤A−1(x− µ) = (x− µ)⊤Σ−1(x− µ).

13



(b) Let A be an n× n matrix. Show that x⊤Ax = 0 for all x ∈ Rn if and only if A+ A⊤ = 0.

(c) Use the result from (b) to show that the matrix Σ you found in part (a) is in fact unique.

Exercise 15. Using the spectral theorem for real symmetric matrices, show that we can write

Σ =

p∑
i=1

λiuiu
⊤
i ,

where λi ∈ R are the eigenvalues of Σ and ui ∈ Rp are the corresponding eigenvectors, with

u⊤
i uj = δij, where

δij =

{
1 if i = j

0 if i ̸= j.

Explain why λi ̸= 0 for all i.

Exercise 16.

(a) Define the quadratic function in the exponential by

∆2 = (x− µ)⊤Σ−1(x− µ).

Show that we can write

∆2 =

p∑
i=1

y2i
λi

,

where

yi = u⊤
i (x− µ).

(b) The coordinate transformation above may be written as

y = U⊤(x− µ),

where U is the p × p matrix whose columns are given by ui. Use the transformation law

to write down the density of y, and show that the yi are independent Gaussian random

variables. Deduce from this that the normalisation constant in (2.1) is correct.

(c) By making the transformation of variables z = x−µ, show from first principles that E[x] = µ.

(d) Show that we can write

z =

p∑
i=1

yiui.

(e) Use (d) to show that

E[xx⊤] = µµ⊤ + Σ.

Deduce from this that

cov(x) = E[(x− E[x])(x− E[x])⊤] = Σ.
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Conditional Gaussian distributions

We shall now prove two very important properties of the Gaussian distribution, namely that if two

vectors xa and xb are jointly Gaussian, then the conditional xa | xb and the marginals xa and xb

are also Gaussian. We start by introducing some notation, let

x =

(
xa

xb

)
be a vector whose first k components are xa and whose last p − k components are xb. Similarly,

introduce

µ =

(
µa

µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
.

Note that Σ⊤
aa = Σaa,Σ

⊤
bb = Σbb and Σ⊤

ab = Σba since Σ is symmetric.

It turns out to be useful to decompose the inverse of Σ in a similar way, so let Λ = Σ−1, and

decompose Λ as

Λ =

(
Λaa Λab

Λba Λbb

)
.

Note that in general, Σ−1
aa ̸= Λaa, and so on. The inverse Λ of the covariance matrix Σ is called the

precision matrix, and is sometimes easier to work with than Σ.

Now, the quadratic function ∆2 decomposes as

− 1

2
∆2 = −1

2
(x− µ)⊤Σ−1(x− µ) = −1

2

(
xa − µa

xb − µb

)⊤(
Λaa Λab

Λba Λbb

)(
xa − µa

xb − µb

)
=

−1

2
(xa−µa)

⊤Λaa(xa−µa)−
1

2
(xa−µa)

⊤Λab(xb−µb)−
1

2
(xb−µb)

⊤Λba(xa−µa)−
1

2
(xb−µb)

⊤Λbb(xb−µb).

To prove that the conditional distribution of xa | xb is Gaussian, we need to show that π(xa | xb)

is of the functional form as a Gaussian density. That is, we need to show that

π(xa | xb) ∝ exp {quadratic function inxa} .

Equivalently, we need to show that

log π(xa | xb) = {quadratic function inxa}+ constant,

where the constant does not depend on xa. Now, log π(xa | xb) = log π(x) − log π(xb), so, since

log π(xb) does not depend on xa, we need to write ∆2 as a quadratic in xa, plus a constant. We

do this by completing the square. From the decomposition above, we can write

−1

2
∆2 = −1

2
x⊤
a Λaaxa + x⊤

a {Λaaµa − Λab(xb − µb)}+ constant.

Completing the square, we get

−1

2
∆2 = −1

2
(xa − (

{
µa − Λ−1

aaΛab(xb − µb)
}
)⊤Λaa(xa − (

{
µa − Λ−1

aaΛab(xb − µb)
}
) + constant.
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Now, we have shown that, as function of xa

π(xa | xb) ∝ π(x)

∝ exp

{
−1

2
(xa − (

{
µa − Λ−1

aaΛab(xb − µb)
}
)⊤Λaa(xa − (

{
µa − Λ−1

aaΛab(xb − µb)
}
)

}
,

and so by functional form,

xa | xb ∼ N(µa|b,Σa|b),

where

µa|b = µa − Λ−1
aaΛab(xb − µb), Σa|b = Λ−1

aa .

Exercise 17. The Woodbury matrix identity says that the inverse of a block matrix can be

calculated as (
A B

C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
,

where

M = (A−BD−1C)−1.

Use this identity to express Λaa and Λab in terms of Σaa,Σab,Σba and Σbb. Finally, deduce that

µa|b = µa + ΣabΣ
−1
bb (xb − µb),

Σa|b = Σaa − ΣabΣ
−1
bb Σba.

Marginal Gaussian distributions

Our next is to show that the marginal distribution xa is also Gaussian, and to derive its mean

vector and covariance matrix. Now, we want to marginalise

π(xa) =

∫
π(xa, xb) dxb.

In order to evaluate this integral, we write ∆2 as a quadratic function in xb. We do this by

completing the square, just like in the previous chapter. We have that

−1

2
∆2 = −1

2
(xb−µb|a)

⊤Λbb(xb−µb|a)+
1

2
µ⊤
b|aΛbbµb|a−

1

2
(xa−µa)

⊤Λaa(xa−µa)+ (xa−µa)
⊤Λabµb.

Thus, when we integrate, the terms in the exponential which do not depend on xb factor out.

Thus, we are left to evaluate∫
exp

{
−1

2
(xb − µb|a)

⊤Λbb(xb − µb|a)

}
dxb,

but this is just a non-normalised Gaussian integral, which we know is just proportional to the de-

terminant of the covariance matrix. Therefore, it simply integrates out to a constant, independent

of xa.
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To evaluate the distribution of xa, we look at the remaining terms in the quadratic ∆2 after having

integrated out xb, which are

ρ =
1

2
µ⊤
b|aΛbbµb|a −

1

2
(xa − µa)

⊤Λaa(xa − µa) + (xa − µa)
⊤Λabµb.

We now complete the square like before. We have

ρ =
1

2
(µb − Λ−1

bb Λba(xa − µa))
⊤Λbb(µb − Λ−1

bb Λba(xa − µa))

− 1

2
(xa − µa)

⊤Λaa(xa − µa) + (xa − µa)
⊤Λabµb

= −1

2
x⊤
a (Λaa − ΛabΛ

−1
bb Λba)xa + x⊤

a (Λaaµa + Λabµb − Λab(µb + Λ−1
bb Λbaµa) + constant

= −1

2
x⊤
a (Λaa − ΛabΛ

−1
bb Λba)xa + x⊤

a (Λaa − ΛabΛ
−1
bb Λba)µa + constant

= −1

2
(xa − µa)

⊤(Λaa − ΛabΛ
−1
bb Λba)(xa − µa) + constant.

So, by functional form, we conclude that xa ∼ N(µa,Σa), where

Σa = (Λaa − ΛabΛ
−1
bb Λba)

−1.

Exercise 18. Use the Woodbury identity to show that in fact

Σa = Σaa.

Bayes’ theorem for Gaussian variables

Suppose we have a Gaussian model for a single p-dimensional vector y of the form

y | θ ∼ N(Aθ + b, L−1), (2.2)

so given θ, y has mean Aθ + b and precision matrix L. Such models are commonly called linear

Gaussian models, due to the linear dependence on θ in the mean.

Now impose a prior distribution on θ. It turns out that the conjugate prior for the Gaussian is

also Gaussian, so

θ ∼ N(µ,Λ−1)

in the prior. Note that we specify a precision matrix rather than a covariance matrix, as this

makes the analysis somewhat simpler. To show that the Gaussian prior is indeed conjugate, we

first need the joint distribution of both y and θ. To simplify notation, let

z =

(
θ

y

)
.

As usual, we will derive the distribution of z by studying the quadratics in the exponents. We

have

log π(z) = log π(θ) + log π(y | θ)

= −1

2
(θ − µ)⊤Λ(θ − µ)− 1

2
(y − Aθ − b)⊤L(y − Aθ − b) + constant
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Let us first identity the precision matrix by gathering all second order terms,

2nd order terms = −1

2
θ⊤Λθ − 1

2
y⊤Ly + y⊤LAθ − 1

2
θ⊤A⊤LAθ

= −1

2

(
θ

y

)⊤(
Λ + A⊤LA −A⊤L

−LA L

)(
θ

y

)
= −1

2
z⊤Rz.

From this, we see that z has precision matrix R.

Exercise 19. Using Woodbury’s matrix identity, show that the covariance matrix of z is

cov(z) = R−1 =

(
Λ−1 Λ−1A⊤

AΛ−1 L−1 + AΛ−1A⊤

)
.

Next, we determine the mean vector of z by gathering linear terms and completing the square. We

have

1st order terms = θ⊤Λµ+ y⊤Lb− θ⊤A⊤Lb =

(
θ

y

)⊤(
Λµ− A⊤Lb

Lb.

)
Hence, completing the square, we get

E[z] = R−1

(
Λµ− A⊤Lb

Lb

)
=

(
µ

Aµ+ b,

)
a very nice result, which makes intuitive sense.

Having worked out the expression for the mean and covariance of z = (θ, y)⊤, we can now write

down the joint distribution.(
θ

y

)
∼ N

((
µ

Aµ+ b

)
,

(
Λ−1 Λ−1A⊤

AΛ−1 L−1 + AΛ−1A⊤

))
.

Exercise 20. Using the previous results for conditional and marginal Gaussian distributions, show

that the posterior distribution is

θ | y ∼ N
(
Σ{A⊤L(y − b) + Λµ},Σ

)
, (2.3)

where

Σ = (Λ + A⊤LA)−1. (2.4)

Show further that the marginal distribution of y is

y ∼ N
(
Aµ+ b, L−1 + AΛ−1A⊤) . (2.5)

Exercise 21 (Based on Nils Lid Hjort’s exercises, # 9).

(a) How tall is Professor Hjort? Assume that the heights of Norwegian men above the age of

twenty follows the normal distribution N(ξ, σ2), with ξ = 180 cm and σ = 9 cm. Thus, if

you have not yet seen or bothered to notice this particular aspect of Professor Hjort and

his lectures, your point estimate of his height ought to be ξ = 180 and a 95% prediction
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interval for his height would be ξ ± 1.96σ, or [162.4, 197.6]. – Assume now that you learn

that his four brothers are actually 195 cm, 207 cm, 196 cm, 200 cm tall, and furthermore

that correlations between brothers’ heights in the population of Norwegian men is equal to

ρ = 0.80. Use this information about his four brothers (still assuming that you have not

noticed Professor Hjort’s height) to revise your initial point estimate of Professor Hjort’s

height. Is he a five-percent statistical outlier in his family (i.e. outside the 95% prediction

interval)?

(b) Assume Professor Hjort has n brothers (rather than merely four) and that you’re learning

their heights X1, . . . , Xn. What is the conditional distribution of Professor Hjort’s height

X0, given this information? Represent this as a N(ξn, σ
2
n) distribution, with proper formulae

for its parameters. How small is σn for a large number of brothers? (The point here is partly

that even if you observe and measure his 99 brothers, there’s still a limit to how much you

can infer about Professor Hjort.)

Hint from Dennis: Use the Sherman-Morrison formula, which says that for any n×n matrix

A and vectors u, v, we have

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

2.2 Empirical Bayes

We have gotten used to the idea of assigning a prior distribution to the unknown parameters θ.

However, when we do so, we usually introduce a new set of parameters. Think back to exercise 3,

where we had Poisson data y with parameter θ, and we assigned a prior Gamma(a, b) to θ, with

its own parameters a and b.

The parameters of the prior distribution are sometimes called hyperparameters, as they are ‘pa-

rameters governing the distribution of the parameters’. We usually have to make a choice of these

parameters, perhaps guided by the remarks listed in the beginning of Section 2.

Another technique for choosing the hyperparameters is that of empirical Bayes, which instead

estimates the hyperparameters directly from the data by maximising the marginal likelihood π(y),

as a function of the hyperparameters. Note that this approach slightly breaks with the pure

Bayesian philisophy, which says that we should choose the prior distribution before we observe

any data. Nevertheless, empirical Bayes is a popular technique amongst many statisticians and

machine learning theorists, and has a surfeit of interesting and nice properties. In this section, we

shall look at some basic examples of the technique. However, it will later show up as a useful tool

when we look at Bayesian regression and classification.

Exercise 22.

(a) Go back to Exercise 3, with the Poisson-Gamma model. Show that the marginal likelihood

π(y) is given by

π(y) =
ba

Γ(a)

Γ(a+ nȳ)

(b+ n)a+nȳ

n∏
i=1

1

yi!
,
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where ȳ = (1/n)
∑n

i=1 yi.

(b) Suppose that we know the value of a, say a0. Show that the maximum (marginal) likelihood

estimate b̂ for b is given by

b̂ =
a

ȳ
.

Let a0 = 0.1 like before and let y be the Poisson data from Exercise 3. What is b̂ in this

case?

(c) Suppose that we want to use a fully empirical Bayesian approach and maximise π(y) as a

function of both a and b (so a = a0 is no longer fixed). What goes wrong?

Exercise 23 (Based on Nils Lid Hjort’s exercises, # 24). This exercise investigates the phe-

nomenon known as the Stein effect, and its connections with empirical Bayes. Suppose there is

an ensemble of parameters θ1, . . . , θk to estimate, where these are thought to be not unreasonably

dissimilar, and where it may make sense to think about them as having arisen from a distribution

of parameter values. In such cases various empirical Bayes constructions will often be successful, in

the sense that they lead to ‘joint estimation’ procedures that typically perform better than using

‘separate estimation’. What is and remains surprising is that for certain situations of the above

type, there are empirical Bayes methods that always and uniformly improve upon the ‘separate

estimation’ procedures, i.e. even when the underlying parameters are widely dissimilar. This phe-

nomenon is loosely referred to as ‘the Stein effect’, or even ‘the Stein paradox’, from influential

papers by Charles Stein in 1956 and later. Even The Scientific American have had papers on this

for a wider audience. The paradox in question is that when needing to estimate apples, oranges,

bananas, then it is counterintuitively possible to do better by calling in information about oranges

and bananas to estimate apples, etc.

The present exercise looks into one of these models where reasonably clean proofs may be given for

the type of universal risk dominance of certain procedures over the standard ones. Let Yi ∼ N(θi, 1)

be independent for i = 1, . . . , k, where the aim is to estimate each of the θi with a combined loss

function

L(θ, θ̂) = k−1

k∑
i=1

(θ̂i − θi)
2.

The ensuing risk for the θ̂ procedure is

R(θ̂, θ) = EθL(θ, θ̂) = k−1

k∑
i=1

Eθ(θ̂i − θi)
2.

This may again be represented as the average variance plus the average squared bias (as a function

of the position in parameter space). Note that θ̂i for θi ought to be allowed to depend on all the

data, not merely Yi.

(a) The standard estimator here is simply using Yi for θi, for i = 1, . . . , k; Yi is after all the

least squares estimator, the maximum likelihood estimator, the best unbiased estimator, it is

admissible, etc. Show that its risk function is simply 1, constant across the parameter space.
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The challenge is to find an estimator which has risk function smaller than 1 everywhere in

the parameter space.

(b) For a single Y ∼ N(θ, 1), show that under very mild conditions on the function b(y), one has

Eθ(Y − θ)b(Y ) = Eθb
′(Y ),

where b′(y) = db(y)/dy. (Hint: Use integration by parts.) Check with e.g. b(Y ) = Y and

b(Y ) = Y 2 to get a feeling for how the identity works.

(c) Using the same technique, generalise the above to

Eθ(Yi − θi)bi(Y ) = Eθbi,i(Y ),

where bi,j(y) = ∂bi(y)/∂yj.

(d) Consider a general competitor to Y of the form θ̂i = Yi − bi(Y ). Show that

Eθ{(Yi − bi(Y )− θi)
2 − (Yi − θi)

2} = Eθ{bi(Y )2 − 2bi,i(Y )}

and hence that

R(θ̂, θ) = R(Y, θ) + EθD(Y ) = 1 + EθD(Y ),

where

D(y) = k−1

k∑
i=1

{bi(y)2 − 2bi,i(y)}.

If in particular we manage to find bi(y) functions for which D(y) < 0 for all y, then θ̂ is a

uniform improvement over the standard estimator Y . It turns out to be impossible to find

such functions for k = 1 or k = 2, but indeed possible for k ≥ 3.

(e) Try bi(y) = cyi/∥y∥2, with ∥y∥2 being the squared Euclidean norm
∑k

i=1 y
2
i , corresponding

to

θ̂ = y − b(y) =

(
1− c

∥y∥2

)
y.

Show that

D(y) =
1

k

1

∥y∥2
{c2 − 2c(k − 2)},

and that this is indeed negative for an interval of c values, provided the dimension is k ≥ 3.

Indeed demonstrate that the best value is c0 = k − 2 and that the consequent risk function

can be expressed as

R(θ̂, θ) = 1− (k − 2)2

k
Eθ

1

∥Y ∥2
= 1− k − 2

k
E

k − 2

χ2
k(∥θ∥2)

.

Here χ2
k(λ) is the excentric chi-squared distribution with k degrees of freedom and excentre

parameter λ.
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(f) The arguments above led to the estimator

θ̂i =

(
1− k − 2

∥y∥2

)
yi for i = 1, . . . , k,

which is a version of the Stein estimator. A useful modification is to truncate the shrinking

factor 1− (k− 2)/∥y∥2 to zero in the case of this being negative, i.e. ∥y∥2 ≤ k− 2. We write

this as

θ̂Stein =

(
1− k − 2

∥y∥2

)+

y, where x+ = max(0, x).

Prove that this modification actually improves the performance further. (It remains easier

to work directly with θ̂, though, e.g. regarding risk functions.)

(g) Show that the greatest risk reduction for θ̂ takes place at zero, with R(θ̂, 0) = 2/k. For a

few values of k, say k = 5, 10, 100, compute and display the risk functions for Y and θ̂, as

functions of ∥θ∥. Do the same with the θ̂Stein estimator (for which you may use simulations

to compute the risk).

(h) Now make the empirical Bayes connection, as follows. Start with the prior that takes

θ1, . . . , θk independent from the N(0, τ 2), and show that the Bayes estimator takes the form

θ∗i = θ∗i (ρ) = ρyi, with ρ =
τ 2

τ 2 + 1
.

(Hint: use the results from Exercise 20.) Show that the marginal distribution of y1, . . . , yk is

that of independent N(0, 1+ τ 2) components, with maximum (marginal) likelihood estimate

τ̂ 2 = (W − 1)+, where W = k−1
∑k

i=1 y
2
i . This invites

ρ̂ =
(W − 1)+

W
=

(
1− k

∥y∥2

)+

,

or versions close to this, for the empirical Bayes estimator

θ̂i,EB = θ∗i (ρ̂) = ρ̂yi.

The Stein type estimator above can accordingly be viewed as an empirical Bayes construction.

Note that θ̂i,EB can be motivated and constructed without any direct concern or calculations

for the risk functions per se.

2.3 The Jeffreys prior

As Bayesian statisticians, if we genuinely know nothing about the prior parameter θ, we would

like to be non-informative. That is, we would like to choose a prior distribution π(θ) which does

not assume anything too strongly about θ. As pointed out in the beginning of Section 2, this

often means that we want to be non-informative with respect to some key hypothesis. However,

in many problems, there is no key hypothesis that we wish to test, and so we want a more general

notion of a non-informative prior. One possibility is that we insist that the prior distribution
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should be invariant under a change of coordinates for the parameters θ. That is, if statisticians A

and B use two different parametrisation θ and ϕ of the same probability distribution, then for all

(measurable) subsets S ⊆ Θ, ∫
S

πθ(θ) dθ =

∫
ϕ(S)

πϕ(ϕ) dϕ. (2.6)

In order to find such the prior satisfying this property, we first need to introduce the Fisher

information. Let Y be a single observation from the density fθ(y). Then the Fisher information

I(θ) is defined as

I(θ) = −Eθ

[
∂2

∂θ2
log fθ(y)

]
= −

∫
Y

{
∂2

∂θ2
log fθ(y)

}
fθ(y) dy.

The Jeffreys prior is defined to be proportional to the square root of the Fisher information,

π(θ) ∝
√
I(θ).

One downside to the Jeffreys prior is that it does not always exist. For some model choices, the

integral
∫ √
I(θ) dθ = ∞ is not bounded, and so we cannot normalise the function

√
I(θ) to get

a valid density. In such cases, we say that π(θ) is an improper prior. We cannot plot its density,

we cannot simulate data from it, etc. However, even though the prior does not exist, the posterior

π(θ | y) often does exist. Therefore, posterior inference is still possible, even though we started

with an improper prior.

Exercise 24. Let Y ∼ Bernoulli(θ), so Y has the mass function

fθ(y) = θy(1− θ)1−y, for y = 0, 1.

Find the Fisher information I(θ) and show that θ ∼ Beta(1/2, 1/2) is the Jeffreys prior.

Exercise 25. Let Y ∼ N(θ, σ2), where σ > 0 is a known parameter. Find the Jeffreys prior for θ

and show that it is improper.

Exercise 26. In this exercise, we prove the invariance property of the Jeffreys prior in the case

where θ is one-dimensional.

Let fθ(y) be a density with parameter θ ∈ R. Now, let ϕ = ϕ(θ) be a different parametrisation,

and let gϕ(y) be the reparametrised density, so

gϕ(θ)(y) = fθ(y).

(a) Let ℓϕ(y) = log gϕ(y). Use the chain rule to show that

∂2ℓϕ
∂θ2

=
∂2ℓϕ
∂ϕ2

(
∂ϕ

∂θ

)2

+
∂ℓϕ
∂ϕ

∂2ϕ

∂θ2
.

(b) The first derivative ∂ℓϕ/∂ϕ is called the score. Show that under mild conditions on gϕ, it has

zero expectation,

Eϕ

[
∂ℓϕ(y)

∂ϕ

]
=

∫ {
∂ℓϕ(y)

∂ϕ

}
gϕ(y) dy = 0.
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(c) Let Iθ and Iϕ denote the Fisher informations with respect to the θ and ϕ parametrisations,

respectively. Show that

Iθ(θ) = Iϕ(ϕ)
(
∂ϕ

∂θ

)2

.

(d) Finally, show that for any (measurable) subset S ⊆ Θ,∫
S

√
Iθ(θ) dθ =

∫
ϕ(S)

√
Iϕ(ϕ) dϕ.

3 The Laplace Approximation (Lazy Bayes)

In the previous section, we saw various ways to define prior distributions in Bayesian problems. We

started by investigating conjugate priors, where the prior density has the same functional form as

the likelihood. These are computationally useful since they allow us to easily compute the resulting

posterior distributions. However, if you impose something different as your prior distribution –

like the Jeffreys prior – you will find if rather difficult (or even impossible) to derive the posterior

distribution in closed form. The difficulty arises from the marginal likelihood,

π(y) =

∫
π(y | θ′)π(θ′) dθ′.

This integral is usually not tractable, meaning that we cannot evaluate the normalisation constant

for the posterior distribution.

So why did conjugate priors work so well? It all boils down to the functional form trick. When

the prior and the posterior are of the same functional form, then so is the posterior, since

Posterior ∝ Likelihood× Prior.

Hence, we only had to inspect the behaviour of the parameters of the posterior distribution,

bypassing the marginal likelihood altogether. The key point is that if you choose anything different

than a conjugate prior, this trick does not work in general.

Later in the course, we shall see the standard way of dealing with this problem, namely the use of

Markov chain Monte Carlo (MCMC) methods. These methods allow us to approximately sample

from the posterior distribution, even when the marginal likelihood cannot be evaluated. In this

chapter, however, we shall consider a simpler approach which works surprisingly well in many cases,

called the Laplace approximation (or sometimes, ‘lazy Bayes’). Suppose we have a density p(x)

with an unknown normalisation constant Z, so p(x) = f(x)/Z, where we only know the function f .

In the Bayesian setting we care about, p would be the posterior π(θ | y), Z would be the marginal

likelihood π(y) and f would be the product of the prior and the likelihood, π(θ)π(y | θ). Let x0

be the mode of the distribution p. That is,

x0 = argmax
x

p(x) = argmax
x

f(x),

the point at which p (or equivalently, f) attains its maximum value. The idea of the Laplace

approximation is to Taylor expand the funciton log f(x) about the mode x0 and only include

terms up to second order. Doing so, we have
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log f(x) ≈ log f(x0)−
1

2
A(x− x0)

2,

where

A = − d2

dx2
log f(x)

∣∣∣∣
x=x0

.

Note that the first order term vanished in our Taylor series since the first derivative vanishes at

maxima. Now, the approximation above leads to

f(x) ≈ f(x0) exp

{
−1

2
A(x− x0)

2

}
.

We recognise the functional form of this unnormalised density as that of a Gaussian distribution

with mean x0 and variance 1/A. Therefore, the Laplace approximation of p(x) is

p(x) ≈ 1√
2π/A

exp

{
−1

2
A(x− x0)

2

}
.

When applying the Laplace approximation in the Bayesian setting, we obtain the approximation

π(θ | y) ≈ N(θMAP, 1/A),

where

θMAP = argmax
θ

π(θ | y) = argmax
θ

log π(θ | y) = argmax
θ

{log π(θ) + log π(y | θ)} (3.1)

is the maximum a posteriori estimate, and

A = − d2

dθ2
log π(θ | y)

∣∣∣∣
θ=θMAP

= − d2

dθ2
{log π(θ) + log π(y | θ)}

∣∣∣∣
θ=θMAP

. (3.2)

Exercise 27. Verify the relations (3.1) and (3.2). Why are these useful?

Exercise 28. After having gone through the above calculations, the Laplace approximation is

best illustrated with an example. Suppose we want to approximate the complicated density p(x) ∝
1/(1 + x4)× σ(2x), where σ(a) = 1/(1 + exp(−a)) is the logistic sigmoid function. We can infact

numerically integrate this function over the reals to find the normalisation constant Z = 1.1107,

but let us see how the Laplace approximation compares. Find the Laplace approximation and plot

its density alongside p(x). Comment on the quality of the approximation.

Exercise 29. In many situations, θ is a p-dimensional vector, not just a scalar. Derive the Laplace

approximation in the multidimensional setting, giving explicit expressions for the p-vector θMAP

and the p× p matrix A.
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4 Model selection and model averaging

So far, we have seen how Bayesian inference works under the specification of a single model.

However, in many situations, we have several candidate models which we would like to compare

or combine. For example, two scientists could impose two different prior distributions on θ, or

disagree about the data generating model π(· | θ). In other situations, we might have two good

models which we would like to combine in order to describe the data better. This is similar to how

one combines machine learning models via ensembling to get better accuracy.

We need to introduce a discrete model space M, containing the candidate models m ∈ M. The

parameter space containing θ will now depend on m, so write θ ∈ Θm. Hence, the extended

parameter space for all the models is⋃
m∈M

(Θm × {m}) =
⋃

m∈M

⋃
θ∈Θm

{(θ,m)}

Now, remember the first sentence we learned in the course, namely that as Bayesians, we treat

every unknown quantity as a random variable. We will therefore impose a prior distribution π(m)

on the models. Usually, whenM is finite, this is just the discrete uniform prior, but in some cases,

we might want uneven priors.

If we condition on a specific model m, then we can carry out inference like before under this model,

with the posterior

π(θ | y,m) =
π(y | θ,m)π(θ | m)

π(y | m)

under model m, and and the marginal likelihood

π(y | m) =

∫
Θm

π(y | θ,m)π(θ | m) dθ

under model m.

In order to evaluate the different models inM, we do the same analysis, but at the model level.

The posterior probability for choosing model m is

π(m | y) = π(y | m)π(m)

π(y)
,

where

π(y) =
∑
m∈M

π(y | m)π(m)

is the marginal likelihood, averaged over the models.

Suppose we have two competing models m and m′, with equal prior probabilities, which we would

like to compare. We would do this by comparing their respective posterior probabilities π(m | y)
and π(m′ | y). The ratio of these two is

π(m | y)
π(m′ | y)

=
π(y | m)π(m)

π(y | m′)π(m′)
=

π(y | m)

π(y | m′)
,
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since the prior probabilities of m and m′ were assumed to be equal. Hence, we see that the ratio

of the posterior model probabilities equals the ratio of the model specific marginal likelihoods, a

ratio more commonly known as the Bayes factor. We will write

Bm,m′ =
π(y | m)

π(y | m′)
.

If the Bayes factor is greater than 1, it means we favour model m over m′. Conversely, if it is less

than 1, then we favour m′ over m.

Bayes factors are a useful tool, but unfortunately, they require the evaluation of marginal likeli-

hoods, which we know is difficult. In the final section of the course, we shall look at some ways of

estimating these marginal likelihoods for models where they cannot be evaluated analytically. In

Section 5.1, we shall see model comparison in action in the context of regression.

Exercise 30. Read the first two sections of MacKay (1992), which you can easily find on Google

Scholar or Oria. You do not have to understand all the details - but try to get a sense of the big

picture.

(a) What is meant by the first and second levels of inference?

(b) Study Figure 1. Which boxes correspond to the first and second level of inference?

(c) What is the principle of Occam’s razor? How does it relate to statistical modelling?

(d) Study Figure 2. How does this figure illustrate Occam’s razor?

(e) Suppose that we want to perform model comparison, but instead of comparing marginal

likelihoods, we use the maximum likelihood values π(y | θ̂, m) for each model m. What goes

wrong?

Exercise 31.

(a) (Based on lecture notes by Nicholls (2023)) Suppose we have a single parameter θ ∈ R and

a finite set of modelsM. Show that under quadratic loss, the Bayes estimator is the model

averaged posterior mean. In particular, show that this will have a lower Bayes risk than the

posterior mean in any single model.

(b) So it seems like averaging multiple models always leads to an improvement. This can be

observed in practice in machine learning, where the combination of multiple trained models

(commonly known as ensembling) leads to more accurate predictions. Can you nevertheless

think of any downsides to model averaging? Come up with scenarios where model selection

is preferred, and others where model averaging is preferred.

4.1 The Bayesian information criterion (BIC)

We have seen that marginal likelihoods (and therefore also Bayes factors) are difficult to calculate

due to the intractability of the integral. The Bayesian information criterion (BIC) offers an ap-

proximation of the marginal likelihood, based on the Laplace approximation, which can be a useful
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heuristic when comparing models. For ease of notation, we omit the dependence on the model m

in this section, so the marginal likelihood takes its usual form π(y) =
∫
π(y | θ)π(θ) dθ. The BIC

is given by the expression

BIC = −2 log π(y | θ̂) + p log n, (4.1)

where θ̂ is the maximum likelihood estimator (MLE) and p = dim(θ) is the number of parameters

in the model. The expression (4.1) is an approximation of −2 log π(y), and so a smaller value of

BIC is favoured. Note that we only need to compute the MLE to compute the BIC. However, it

should be noted that it yields only an approximate answer, and so we should not base our decisions

in model comparison on the BIC alone.

4.2 Derivation of the BIC

This section is non-examinable.

The remainder of this section is devoted to deriving the BIC approximation. We start with the

marginal likelihood

π(y) =

∫
π(y | θ)π(θ) dθ =

∫
exp{log π(y | θ)}π(θ) dθ =

∫
exp{ℓ(θ)}π(θ) dθ, (4.2)

where ℓ(θ) is the log likelihood.

Now we employ the Laplace approximation. Expanding the log likelihood about the MLE θ̂, we

get

ℓ(θ) = ℓ(θ̂)− n

2
(θ − θ̂)⊤Â̂θ(θ − θ̂) + · · · , (4.3)

where

Aθ̂ = −
1

n

∂2ℓ(θ)

∂θ∂θ⊤

∣∣∣∣
θ=θ̂

.

This is a slightly different derivation as the one we used for the Laplace approximation in Section

3. The reason that we have included a factor of 1/n in the expression for Aθ̂ is that we want this

quantity to be O(1) with respect to n. By the variance of the asymptotic normality of the MLEs,

we know that this holds for Aθ̂.

Now, assuming the prior is approximately linear around the MLE, we can expand π(θ) around θ̂

and ignore all but linear terms, which yields

π(θ) = π(θ̂) + (θ − θ̂)⊤
∂π(θ)

∂θ

∣∣∣∣
θ=θ̂

+ · · · . (4.4)

Substituting (4.3) and (4.4) into (4.2), we obtain

π(y) =

∫
exp

{
ℓ(θ̂)− n

2
(θ − θ̂)⊤Aθ̂(θ − θ̂) + · · ·

}{
π(θ̂) + (θ − θ̂)⊤

∂π(θ)

∂θ

∣∣∣∣
θ=θ̂

}
dθ

≈ exp{ℓ(θ̂)}π(θ̂)
∫

exp
{
−n

2
(θ − θ̂)⊤Aθ̂(θ − θ̂)

}
dθ, (4.5)

where we have used that ∫
(θ − θ̂) exp

{
−n

2
(θ − θ̂)⊤Aθ̂(θ − θ̂)

}
dθ = 0.
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Now, (4.5) is a Gaussian integral, which we can evaluate to∫
exp

{
−n

2
(θ − θ̂)⊤Aθ̂(θ − θ̂)

}
dθ = (2π)p/2n−p/2|Aθ̂|

−1/2.

Putting everything together, we get the approximation

π(y) ≈ exp{ℓ(θ̂)}π(θ̂)(2π)p/2n−p/2|Aθ̂|
−1/2. (4.6)

Taking the logarithm of (4.6) and multiplying by −2, we get

−2 log π(y) ≈ −2ℓ(θ̂)− 2 log π(θ̂)− p log(2π) + p log n+ log |Aθ̂|. (4.7)

Finally, we ignore all terms less than or equal to O(1) with respect to n to obtain the BIC (4.1).

5 Regression and classification

This section builds on Bishop (2006, Chapters 3 and 4).

In this section, we shall consider problems where our data1 y = (y1, . . . , yn)
⊤ depend on a number

of inputs x = (x1, . . . , xn)
⊤, where each input xi is a d-dimensional vector. The main goal of such

models is to predict the value of an outcome y′ given a new input x′. This section is all about

linear models, which provides a fundamental understanding of prediction models in the Bayesian

setting. The derivations in this chapter will form the foundations needed for understanding more

advanced models, such as neural networks or Gaussian processes. There are two main types of

problems to study: regression and classification. In the regression setting, the dependent variables

y are continuous, whereas in the classification setting, they are discrete. We shall attack the former

setting fist.

5.1 Linear models for regression

At first glance, you may think that linear models for regression are too restrictive, implying a

linear dependence between the inputs xi and the outcomes yi. However, we shall allow ourselves

a lot more flexibility by first mapping the inputs xi to a set of suitable features,

ϕ(xi) = (ϕ0(xi), ϕ1(xi), . . . , ϕp−1(xi))
⊤,

which are usually non-linear functions of the xi. For reasons we shall see shortly, we let ϕ0 be the

constant function 1.

The models we shall study take the form

yi = w⊤ϕ(xi) + ϵi = w0 + w1ϕ1(xi) + · · ·+ wp−1ϕp−1(xi) + ϵi. (5.1)

Here, the w = (w0, . . . , wp−1)
⊤ is the vector of coefficients of the model, and the noise ϵi ∼

N(0, β−1) are iid Gaussian variables with precision β. The linearity thus refers to the linearity in

1In previous sections, we have not cared much about whether to interpret y as a row or column vector. However,

since the linear algebra is particularly important in this section, we will consistently treat y as a column vector.
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the features ϕ(xi), not the inputs xi themselves. We now see why we declared ϕ0 = 1, namely so

that our model includes a constant term w0. Note that (5.1) can alternatively be written as

yi ∼ N(w⊤ϕ(xi), β
−1), (5.2)

independently for i = 1, . . . , n. Let us consider some examples of models of this kind.

Example 1.

(a) Let ϕj(x) = xj. Then the model becomes

yi = w⊤ϕ(xi) + ϵi = w0 + w1xi + w2x
2
i + · · ·+ wp−1x

p−1
i + ϵi.

That is, yi is modelled as a degree p− 1 polynomial with Gaussian noise.

(b) Let

ϕj(x) = exp

{
− 1

2s2
(x− µj)

2

}
.

These are usually called Gaussian features, due to their functional form. Here, s is a global

hyperparameter, and the µj are the locations of the centres of the features. We do not have

to normalise these features, since they are not probability distributions – they are simply

functions mapping the inputs xi to a richer feature space.

It is usually more convenient to write (5.1) in matrix form,

y = Φw + ϵ. (5.3)

Here, the n× p matrix

Φ =


ϕ0(x1) ϕ1(x1) · · · ϕp−1(x1)

ϕ0(x2) ϕ1(x2) · · · ϕp−1(x2)
...

...
. . .

...

ϕ0(xn) ϕ1(xn) · · · ϕp−1(xn)

 (5.4)

is called the design matrix, and the vector ϵ = (ϵ1, . . . , ϵn)
⊤ is a vector of iid Gaussians, all with

precision β. We may also rewrite (5.2) in matrix form,

y ∼ N(Φw, β−1I), (5.5)

where I is the n × n identity matrix. Having set up the model, our goal is two-fold: First, we

would like to estimate the parameters w and β of the model. Secondly, given a new input x⋆, we

would like to predict the outcome y⋆.

5.1.1 The frequentist solution: Least squares and penalisation

Before we look at the Bayesian solution to the regression problem, let us first recap the frequentist

solution, which you may have seen before. In the frequentist framework, the parameters w are

30



estimated via maximum likelihood estimation. We will treat the parameter β as fixed and known.

From (5.2), the likelihood Ln takes the form

Ln(w) =
n∏

i=1

1√
2πβ−1

exp

{
−1

2
β(yi − w⊤ϕ(xi))

2

}
, (5.6)

and so the log likelihood is given by

ℓn(w) = −
n

2
log(2π) +

n

2
log(β)− β

2

n∑
i=1

{yi − w⊤ϕ(xi)}2

= −n

2
log(2π) +

n

2
log(β)− β

2
∥y − Φw∥2

= −n

2
log(2π) +

n

2
log(β)− β

2
(y − Φw)⊤(y − Φw), (5.7)

where ∥·∥ is the ℓ2 norm, also known as the Euclidean norm. To find the MLEs, we maximise (5.7)

with respect to the parameters. Differentiating with respect to w gives

2Φ⊤(y − Φw) = 0,

and so, solving for w, we obtain the MLE

ŵ =
(
Φ⊤Φ

)−1
Φ⊤y (5.8)

That is, we recover the normal equations, i.e. the solution to the least squares regression problem.

The matrix Φ† =
(
Φ⊤Φ

)−1
Φ⊤ is called the Moore-Penrose pseudo inverse. Note that if Φ is a

nonsingular square matrix, then Φ† = Φ−1. In this way, the pseudo inverse can be thought of as a

generalisation of inverses to non-square matrices.

It should also be mentioned that we could treat β as its own parameter to be estimated. Doing so

would yield the MLE
1

β̂
=

1

n
∥y − Φŵ∥2 = 1

n

n∑
i=1

{
yi − ŵ⊤ϕ(xi)

}2
. (5.9)

Exercise 32. Download the sinusoidal.csv data set from course webpage, which you can find

on the website. This was made by collecting n = 20 evenly spaced points 0 = x1 < · · · < xn = 1

on the unit interval, and then computing yi = f(xi) + εi, where

f(x) = sin(2πx)

and εi ∼ N(0, 0.22), independently, for i = 1, . . . , n.

(a) Plot the data and the underlying function f , recreating Figure 1.

(b) Using the polynomial basis functions, use the normal equations to find ŵ and plot the

resulting curves along with the data, for p = 4 (i.e. cubic regression). Compute the mean

squared error (MSE) and ∥w∥2/p.
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Figure 1: The sinusoidal data (n = 20), along with the underlying function.
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(c) Repeat the above analysis for p = 2, 3 and p = n = 20. What happens when p = n? What

are the values of the MSE and ∥w∥2/p, and how do they relate to the linear algebra involved?

In the previous exercise we saw that a more complicated model resulted in overfitting. In order to

penalise model complexity, least squares regression often includes a penalty term, so we minimise

instead

min
w

{
∥y − Φw∥2 + λ∥w∥2

}
. (5.10)

We see that large values of ∥w∥2 are discouraged. By maximising (5.10) with respect to w, we can

show that

ŵ = (λI + Φ⊤Φ)−1Φ⊤y, (5.11)

where I is the p× p identity matrix. In the next section, we shall see that, unlike the frequentist

approach, Bayesian regression penalises model complexity by construction. Indeed, we shall recover

the penalised least squares minimiser (5.10) automatically.

It should be pointed out that other penalties can be used. Recall that for 1 ≤ q <∞, the ℓq norm

(denoted ∥·∥q) of a vector w = (w0, . . . , wp−1)
⊤ is given by

∥w∥q =

(
p−1∑
j=0

|wj|q
) 1

q

.

If we use the ℓq norm and raise to the power q rather than the ℓ2 norm squared in (5.10), we obtain

the optimisation problem

min
w

{
∥y − Φw∥2 + λ∥w∥qq

}
= min

w,β

{
∥y − Φw∥2 + λ

p−1∑
j=0

|wj|q
}
. (5.12)

The choice of q = 1 leads to the famous lasso, which naturally to yields sparse minimisers (i.e. lots

of zero entries in ŵ). This is important in the high-dimensional setting, where we want to exclude

features with little predictive value.

5.1.2 Bayesian linear regression

Having seen the well-known frequentist solution to the regression problem (including regularisa-

tion), we are ready to look at the Bayesian approach to regression. As always, the key difference

between these approaches is that in the Bayesian setting, we treat unknown quantities as random

variables. Thus, we will impose a prior distribution on the vector of coefficients w. From (5.5),

the likelihood is a Gaussian, and therefore the conjugate prior is also a Gaussian. For the sake of

further simplicity, we shall impose a zero mean isotropic Gaussian,

w ∼ N(0, α−1I), (5.13)

meaning that E[w] = 0 and that the prior covariance is a constant multiple of the identity matrix.

Rather than assigning priors to α and β, we shall treat them as hyperparameters of the model for
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now. In Section 5.1.4, we will use empirical Bayes (see Section 2.2) to find optimal values for these

parameters.

Now, having chosen a conjugate, Gaussian prior, we know that the posterior2 for w will also be

Gaussian,

w | y ∼ N(mn, Sn).

It remains to find expressions for the posterior mean mn and covariance matrix Sn. Fortunately,

we do not have to do any extra work, as the derivations from Section 2.1.1 will do all the heavy

lifting for us. The prior (5.13) and the likelihood (5.5) form pricesely a linear Gaussian model (see

(2.2)), and we can therefore simply read off the posterior mean and covariance matrix using (2.3)

and (2.4). Doing so yields

mn = βSnΦ
⊤y (5.14)

S−1
n = αI + βΦ⊤Φ. (5.15)

Exercise 33. Verify relations (5.14) and (5.15).

It is worth looking at what the MAP estimator looks like in this setting. Recall from Section 3

that the MAP is the value of w which maximises the (log) posterior, which in this case means that

wMAP = argmax
w

log π(w | y)

= argmax
w

{log π(y | w) + log π(w)}

= argmax
w

{
−β

2
(y − Φw)⊤ (y − Φw)− α

2
w⊤w

}
= argmax

w

{
−β

2
∥y − Φw∥2 − α

2
∥w∥2

}
= argmin

w

{
∥y − Φw∥2 + α

β
∥w∥2

}
,

meaning that we have recovered regularised least squares regression (5.10) with λ = α/β. This

illustrates quite nicely how the Bayesian framework penalises model complexity by design. We do

not have to arbitratily impose regularisers - the machinery does the job for us.

We just saw that the Gaussian prior naturally recovered regularised least squares regression with

the Euclidean penalty term λ∥w∥2. At this point, we may ask whether it is possible to recover the

more generalised regularisation (5.12) by choosing a sufficiently clever prior for w. It turns out

that this is indeed possible, and the required prior for w is given by

π(w) =

{
q

2

(α
2

)1/q 1

Γ(1/q)

}p

exp
{
−α

2
∥w∥qq

}
=

{
q

2

(α
2

)1/q 1

Γ(1/q)

}p

exp

{
−α

2

p−1∑
j=0

|wj|q
}
.

2You may wonder why we do not condition on α, β or x in the notation for the posterior. Some authors do,

but it is useful to only condition on random variables, which neither α, β or x are. This makes it easier for us to

separate between what is random and what is not, and also makes the notation less cluttered.
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It is not difficult to show that if we plug in q = 2, then we recover the isotropic Gaussian prior

(5.13).

Usually, our main interest is not in analysing the posterior distribution π(w | y), but rather the

predictive distribution π(y′ | y) of a new output y′ from a new input x′, given the observed outputs

y. This distribution can be written as

π(y′ | y) =
∫

π(y′, w | y) dw

=

∫
π(y′ | w)π(w | y) dw,

where both π(y′ | w) and π(w | y) are Gaussian. By (2.5), we know that π(y′ | y) will also be

Gaussian, and we can write its mean and variance in explicit form, namely

y′ | y ∼ N(m⊤
nϕ(x

′), σ2
n(x

′)), (5.16)

where

σ2
n(x

′) =
1

β
+ ϕ(x′)⊤Snϕ(x

′).

Exercise 34. Return to the analysis of the sinusoidal data set, using polynomial basis functions

for p = 4.

(a) Set α = 0.0001 and β = 10, and go through the Bayesian analysis. Along with the data, plot

the predictive mean, with ± one standard deviation on either side.

(b) Now modify the data set by removing all points xi satisfying xi < 0.4 (and remove the

corresponding yi). Create the same plot as you did in part (a), mutatis mutandis. What

happens?

5.1.3 Model comparison

We will now discuss how to compare different models in the regression setting. This will allow us

to evaluate the performance of different choices of basis functions, along with different choices of p.

As we say in Section 4, this is done by evaluating the marginal likelihoods π(y) for the competing

models. In our setting, we have a Gaussian likelihood and a Gaussian prior, and so it would be

possible to use (2.5) to marginalise directly. However, it turns out that in this case, we get the

answer in a more insightful form if we complete the square in the integrand explicitly, and so that

is what we shall do here. Now, the marginal likelihood π(y) takes the form

π(y) =

∫
π(y | w)π(w) dw

=

(
β

2π

)n/2 ( α

2π

)p/2 ∫
exp {−E(w)} dw, (5.17)

where

E(w) =
β

2
∥y − Φw∥2 + α

2
∥w∥2. (5.18)
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Completing the square over w like before yields

E(w) = E(mn) +
1

2
(w −mn)

⊤A(w −mn), (5.19)

where

A = S−1
n = αI + βΦ⊤Φ.

Having completed the square, we can now compute the integral (5.17) to obtain∫
exp{−E(w)} dw = exp{−E(mn)}

∫
exp{−1

2
(w −mn)

⊤A(w −mn)} dw

= exp{−E(mn)}(2π)p/2|A|−1/2.

Hence, the log marginal likelihood can be written as

log π(y) =
p

2
logα +

n

2
log β − E(mn)−

1

2
log |A| − n

2
log(2π). (5.20)

Exercise 35. Continue the analysis of the sinusoidal data set, again with α = 0.0001 and

β = 10. Use (5.20) to compare the polynomial regression models for different values of p. Which

model is the best? What do the results tell you about the compromise between the goodness of fit

versus model complexity?

Exercise 36. In this exercise, we shall derive (5.20) directly using (2.5).

(a) Show that marginally,

y ∼ N(0, B),

where B = β−1I + α−1ΦΦ⊤, and that therefore,

log π(y) = −1

2
y⊤B−1y − 1

2
log |B| − n

2
log(2π).

(b) Next, we need the binomial inverse theorem, which states that if X, Y, U, V are matrices of

sizes n× n, p× p, n× p, p× n, respectively, then

(X + UY V )−1 = X−1 −X−1UY (Y + Y V X−1UY )−1Y V X−1.

Use this to show that

y⊤B−1y = βy⊤y − βy⊤Φmn.

(c) Now show that
β

2
m⊤

nΦ
⊤Φmn +

α

2
m⊤

nmn =
β

2
y⊤Φmn,

and conclude thus that in fact,
1

2
y⊤B−1y = E(mn).

(d) Next, we look at the determinant of B. Again, using the binomial inverse theorem, show

that

B−1 = β
{
I − βΦA−1Φ⊤} .
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(e) Recall that λj denote the eigenvalues of the matrix βΦ⊤Φ, with corresponding eigenvectors

uj. By showing that Φuj is an eigenvector of βΦA−1Φ⊤, deduce that

|I − βΦA−1Φ⊤| =
p−1∏
j=0

(
1− λj

α + λj

)
.

Conclude that

|B| = 1

αpβn
|A|.

(f) Finally, put everything together to recover (5.20).

5.1.4 Empirical Bayes

There is one final outstanding question in our regression story, namely how to decide the values

of the hyperparameters α and β. The fully Bayesian solution is, as you might expect, to impose

a prior distribution π(α, β), but this complicates the previous mathematical analysis, making the

posterior π(α, β, w | y) and the predictive π(y′ | y) mathematically intractable. These issues can be

overcome with more sophisticated machinery, like Markov chain Monte Carlo (MCMC) techniques,

which we shall later on. However, in this section, we shall employ the technique of empirical Bayes,

which we saw in Section 2.2, to choose α and β so that the (log) marginal likelihood is maximised.

As we will discover, the analysis is quite fruitful and yields a nice geometrical interpretation of the

effective number of parameters in the regression model.

For empirical Bayes, we need to optimise the log marginal likelihood (5.20) with respect to α and

β. Let us consider the optimisation with respect to α first. To do so, we need to introduce the

eigenvalues and eigenvectors of the matrix βΦ⊤Φ. Write(
βΦ⊤Φ

)
uj = λjuj, (5.21)

for3 j = 0, . . . , p−1. Having introduced λj and uj, we note that the eigenvectors of A = αI+βΦ⊤Φ

are also the uj, but with eigenvalues α+λj. Now, the determinant of a matrix equals the product

of its eigenvalues, and therefore

|A| =
∏
j

(α + λj).

Hence, when we differentiate (5.20) with respect to α, we have

∂

∂α
log |A| = ∂

∂α

∑
j

log(α + λj) =
∑
j

1

α + λj

. (5.22)

We also need to differentiate E(mn) with respect to α. It turns out that

∂

∂α
E(mn) =

1

2
m⊤

nmn. (5.23)

3we index from j = 0 to be consistent with the indexing of the design matrix Φ in (5.4).
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We now set the derivative of (5.20) with respect to α equal to zero, which yields

p

2α
− 1

2
m⊤

nmn −
1

2

∑
j

1

α + λj

= 0. (5.24)

Multiyplying through by 2α and rearranging, we get

α =
γ

m⊤
nmn

, (5.25)

where

γ =
∑
j

λj

α + λj

. (5.26)

The quantity γ has a particularly nice geometric interpretation to which we shall return shortly.

Note that (5.25) is only an implicit equation. Indeed, the parameter γ depends on α and the

eigenvalues λj depend on the other hyperparameter β. However, as we shall see shortly, we can

derive a similar implicit equation for β, which will allow us to make an initial guess for α and β,

and then sequentially update their values using the implicit equation until we have optimised the

marginal likelihood.

Exercise 37. Verify relation (5.23).

We now differentiate (5.20) with respect to β to obtain the implicit equation for β. First, we need

to find the derivative of log |A| with respect to β. By differentiating (5.21), one can show that

dλj

dβ
=

λj

β
, (5.27)

and so
∂

∂β
log |A| = ∂

∂β

∑
j

log(α + λj) =
∑
j

λj/β

α + λj

=
γ

β
. (5.28)

Using this to differentiate (5.20), we see that any stationary point must satisfy

n

2β
− 1

2
∥y − Φmn∥2 −

γ

2β
= 0. (5.29)

Multiyplying by 2β and rearranging, we obtain

1

β
=

1

n− γ
∥y − Φmn∥2 =

1

n− γ

∑
i

{
yi −m⊤

nϕ(xi)
}2

. (5.30)

Again, this is only an implicit equation for β (as the eigenvalues λj depend on β), but we can

use (5.25) and (5.30) in tandem to sequentially update the values of α and β until convergence to

maximise the marginal likelihood.

Exercise 38. Verify relation (5.27).

Exercise 39. Return to the analysis of the sinusoidal data set (with the cubic regression model).

Starting with α = 0 and β = 1, use the updates (5.25) and (5.30) sequentially until convergence

to optimise the log marginal likelihood with respect to α and β. What happens if you start with

α = 1 and β = 1?
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wMAP

Figure 2: Contours of the likelihood function, drawn on axes aligned with the eigenvectors of

βΦ⊤Φ.

The parameter γ has a particularly nice geometric interpretation which we will now explain. The

key in this interpretation is to study the matrix βΦ⊤Φ. First of all, note that this matrix is positive

definite, so that it has positive eigenvalues. Also, we can see that βΦ⊤Φ is actually the Hessian of

the log likelihood function with respect to w. Indeed,

∇∇⊤ log π(y | w) = −β

2
∇∇⊤(y − Φw)⊤(y − Φw)

= −β∇(y − Φw)⊤Φ

= βΦ⊤Φ,

and so the eigenvalues λj describe the curvature of the contours of the log likelihood function

along the axes aligned with the eigenvectors uj. See Figure 2 for an example in two dimensions.

Here the axes for w0 and w1 have been aligned with the eigenvectors u0 and u1. In red, we see

a contour of the log likelihood function, which is an ellipse centred at the MLE and aligned with

the eigenvectors. Now, since the curvature is smaller in the direction of u0 than u1, we know that

λ0 is smaller than λ1. In other words, the axis with the larger eigenvalue contributes more to the

curvature of the log likelihood surface.

As all the eigenvalues λj are positive, the quantities λj/(α+λj) are bounded between 0 and 1, and

so γ, defined in (5.26) is bounded between 0 and p. Now, if λj ≪ α, then λj/(α + λj) ≈ 0, and

this term will not contribute much to the sum (5.26). Conversely, if λj ≫ α, then λj/(α+λj) ≈ 1,

and so we get a substantial contribution. Viewed in this light, γ measures the effective number of

parameters in the model.

The discussion above now yields some useful insight into the estimation procedure for β, defined

by (5.30). Comparing with (5.9), we see a great similarity. Both express the variance 1/β as an

empirical average of the squared distance between the data and the predictions. However, in (5.9),

we divide by n in the average, whereas in (5.30), we divide by n− γ. This is quite similar to the

problem of estimating the mean and variance of a distribution from data. Indeed, suppose that
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z1, . . . , zn are iid samples from a distribution with mean µ and variance σ2. We would estimate

the mean as

µ̂ =
1

n

n∑
i=1

xi.

Having done so, we could estimate the variance by

σ̂2 =
1

n

n∑
i=1

(x− µ̂)2,

however, this estimator is biased. In order to obtain an unbiased estimator, we use the estimator

σ̂2n/(n − 1). Similarly, in frequentist regression problems, the corresponding unbiased estimator

for the variance divides by n minus the number of parameters, rather than n. This is precisely

what happens in (5.30).

Exercise 40. Return once more to the sinusoidal data set. Using the optimal values you found

in Exercise 39, along with the eigenvalues λj of βΦ
⊤Φ, calculate the effective number of parameters.

5.2 Linear models for classification

We now move on to the second kind of input-dependent models which we shall study, namely

classification models. In the regression setting in the previous section, the outputs yi were con-

tinuous. In classification, they are discrete. More specifically, we shall only consider the case of

binary classification, so each yi ∈ {0, 1}. It is not too difficult to extend the results we will derive

here to the multiclass setting.

Like in the previous section, we shall consider linear models, where the inputs xi have been mapped

to some fixed features ϕ(xi) = (ϕ0(xi), . . . , ϕp−1(xi))
⊤, where, as before, ϕ0(x) = 1. We still let

w = (w0, . . . , wp−1)
⊤ denote the vector of coefficients. However, there is no Gaussian noise this

time, since we assume all the data are correctly labelled. Instead, we want to map the inner

product ηi = w⊤ϕ(xi) to the interval [0, 1], so that this will represent the probability that yi = 1,

given input xi. We do this by choosing a suitable smooth and increasing function f : R → [0, 1],

and model the probability that yi = 1 by

P(yi = 1 | w) = f(ηi) = f(w⊤ϕ(xi)), (5.31)

and P(yi = 0 | w) = 1− P(yi = 1 | w).
A common choice of function f is the logistic sigmoid function σ, defined by

σ(a) =
1

1 + exp(−a)
. (5.32)

This function has the nice property that

d

da
σ(a) = σ(a)[1− σ(a)]. (5.33)

Classification with σ is commonly referred to as logistic regression, but we emphasise that it is not

regression in the sense of the previous section, since the outcomes yi are discrete, not continuous.

It is merely a convention of terminology.
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Another common choice is the probit function Φ, defined by

Φ(a) =

∫ a

−∞
(2π)−1/2 exp{−t2/2} dt, (5.34)

i.e., it is the standard normal cdf. Classification with Φ is commonly referred to as probit regression.

From (5.31), we see that the outcomes yi as Bernoulli random variables, with parameters f(ηi).

The likelihood of the outcomes y = (y1, . . . , yn)
⊤ given w is thus

π(y | w) =
n∏

i=1

f(ηi)
yi [1− f(ηi)]

1−yi , (5.35)

and the log likelihood is

log π(y | w) =
n∑

i=1

{yi log f(ηi) + (1− yi) log[1− f(ηi)]} . (5.36)

5.2.1 Bayesian classification

To achieve a Bayesian solution to classification, we impose a prior distribution on w. Like in the

regression setting, we shall impose a Gaussian prior, as this simplifies the upcoming mathematical

analysis. Letting m0 and S0 denote the prior mean and covariance matrix, we let

w ∼ N(m0, S0). (5.37)

Unlike the the previous section, we do not insist on using a zero mean isotropic prior, as there is

not much to gain from this assumption in the classification problem.

Combining (5.36) and in Bayes theorem, we see that the log posterior takes the form

log π(w | y) = −1

2
(w −m0)

⊤S−1
0 (w −m0) +

n∑
i=1

{yi log f(ηi) + (1− yi) log[1− f(ηi)]}+ constant.

(5.38)

Due to the presence of the Bernoulli likelihood, we are not able to evaluate the posterior distribution

in closed form. We will therefore employ the Laplace approximation, introduced in Section 3. That

is, we use a Gaussian approximation π(w | y) ≈ q(w), with mean wMAP and precision matrix

S−1
n = −∇∇⊤ log π(w | y). (5.39)

Exercise 41.

(a) Using (5.33), show that for logistic regression, the approximate posterior covariance matrix

Sn takes the form

S−1
n = S−1

0 +
n∑

i=1

σ(ηi)[1− σ(ηi)]ϕ(xi)ϕ(xi)
⊤.
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(b) Show also that for probit regression, we have

S−1
n = S−1

0 +
n∑

i=1

{
yi
ηiN(ηi; 0, 1)Φ(ηi) + N2(ηi; 0, 1)

Φ2(ηi)

+(1− yi)
N2(ηi; 0, 1)− ηiN(ηi; 0, 1) [1− Φ(ηi)]

[1− Φ(ηi)]
2

}
ϕ(xi)ϕ(xi)

⊤.

We have used the notation N(x; 0, 1) rather than the standard ϕ(x) here to avoid confusion

with the features ϕ(xi).

(c) The expression for the probit model is not so nice, so we tend to work with its expectation

instead (with respect to y). Show that

Ey[S
−1
n ] = S−1

0 +
n∑

i=1

N2(ηi; 0, 1)

Φ(ηi) [1− Φ(ηi)]
ϕ(xi)ϕ(xi)

⊤.

What have we in fact calculated here?

(d) Assume that S0 is a positive definite matrix. Verify that the matrices in (a) and (c) are also

positive definite for any w. Why is this useful when computing wMAP?

(e) Write down the updating equation for the Newton-Raphson formula for computing wMAP

for the probit model, where you use −Ey[S
−1
n ] as a proxy for the Hessian matrix of the log

posterior.

Having derived our Gaussian approximation q(w) of the posterior, we move on the the predictive

distribution π(y′ | y) of a new outcome y′ from a new input x′, given the data y. With the Laplace

approximation, we have

P(y′ = 1 | y) =
∫

P(y′ = 1 | w)π(w | y) dw

≈
∫

P(y′ = 1 | w)q(w) dw

=

∫
f(w⊤ϕ(x′))q(w) dw. (5.40)

A priori, this integral is quite difficult to evaluate, as we have to integrate over all the coefficients

w. However, we can exploit that f(w⊤ϕ(x′)) only depends on w through the inner product η′ =

w⊤ϕ(x′), and so simplify the above integral significantly by working with the distribution of η′

instead. Now, η′ is a linear combination of Gaussian random variables, so we know it must be

Gaussian. From the Laplace approximation we derive that π(η′ | y) = N(η′;µ, σ2), where

µ = E[η′ | y] = w⊤
MAPϕ(x

′),

σ2 = Var(η′ | y) = σ2 = ϕ(x′)⊤Snϕ(x
′).
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Hence, we can write (5.40) as

P(y′ = 1 | y) =
∫

f(η′)π(η′ | y) dη′

=

∫
f(η′)N(η′;µ, σ2) dη′.

In general, we are not able to simplify this integral further. However, in the case of probit regression,

we can actually evaluate this integral analytically. Doing so, we obtain

P(y′ = 1 | y) =
∫

Φ(η′)N(η′;µ, σ2) dη′ = Φ

(
µ√

1 + σ2

)
(5.41)

as our final expression of the predictive probability that y′ = 1.

Exercise 42. Verify relation (5.41) by differentiating both sides with respect to µ. It is useful to

use the substitution η′ = µ+ σz in the integral.

Exercise 43. We shall now apply the theory from this Section on a real data set, namely the

famous Iris data set, which comprises N = 150 observations, each of which has a four dimensional

input x and a target y ∈ {0, 1, 2}. Since we want to only work with binary classification, we only

use the observations with y = 0 or y = 1. In total, there are n = 100 such observations.

(a) Import the Iris data set. In Python, you can find it in sklearn.data sets. Make sure to

delete the rows of X and y where y = 2. Also, add a column of ones to X so that we include

the constant feature. Thus, p = 5.

We want to project the inputs X onto two dimensions so that we can plot the data and

see what is going on. Find the first two principal components. If you are not familiar with

the principal component analysis (PCA), use the following recipe: First find the centred

empirical covariance matrix S, given by

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)⊤.

Note that S is symmetric and positive semidefinite. Therefore, by the spectral theorem, its

eigenvalues are real and we can write

S = U⊤ΛU,

where Λ is a diagonal matrix of real eigenvalues λ1 ≥ · · · ≥ λp, and U is an orthogonal matrix

whose columns are the corresponding eigenvectors. The dimension reduction map we want

to use is given by the 2× p matrix M , whose rows are u1 and u2, corresponding to the two

largest eigenvalues λ1 and λ2. To make sure our eigenvalues all have the same sign, let us

declare that the last entry of u1 is positive and that the last entry of u2 is negative. Using

the map M , recreate the scatter plot in Figure 3.
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Figure 3: The two first principal components of the Iris data sets, restricted to the n = 100

observations with y ∈ {0, 1}.

(b) Let us use probit regression to train a binary classifier for our “binary Iris” data set. Use

m0 = 0 and S0 = α−1I in the prior, with α = 0.01. Implement the Newton-Raphson

algorithm you wrote down in Exercise 41 (e) to calculate wMAP. You will have to work on a

log scale here, so that things do not blow up numerically.

(c) The equation for the decision boundary is given by

P(y′ = 1 | y) = 1

2
.

From (5.41), show that this equation is indeed what we expect it to be, namely

w⊤
MAPϕ(x

′) = 0.

Use this, along with map M you found, to include the decision boundary in your scatter

plot.

(d) Compute the posterior predictive mean µ and variance σ2 at all points in your plot, and use

these to plot the predictive density in your plot. In Python, you may find the pcolormesh

function helpful.
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6 Exchangeability and De Finetti’s Theorem

It is time for a theoretical interlude. In the present section and the next, we shall make a detour

into two aspects of theoretical foundations of Bayesian inference (without proofs), starting with

de Finetti’s theorem. The upshot of this theorem is the following assertion. Suppose we have

exchangeable data y = (y1, . . . , yn), which means, roughly speaking, that shuffling the order of the

observations makes no difference. Then there must exist some parameter θ and an accompanying

prior π(θ) such that when we condition on θ, the data are iid.

Hence, de Finetti’s theorem provides justification for the Bayesian perspective. It provides suffi-

cient conditions for the existence of a prior and a data model. To understand the theorem fully,

we first need to properly define the notion of exchangeability.

6.1 Exchangeability

We begin with the definition of finite exchangeable sequences. A permutation is a bijective map

σ : {1, . . . , n} → {1, . . . , n}.

Definition 6.1. We say that a finite sequence Y = (Y1, . . . , Yn) of random variables is exchangeable

if, for any permutation σ, we have

(Y1, . . . , Yn) ∼ (Yσ(1), . . . , Yσ(n)),

where ∼ means ‘distributed equally’ in this setting.

That is, the joint distribution of the Yi does not change after we shuffle the coordinates. If the

joint density of the Yi is f(y1, . . . , yn), then Y1, . . . , Yn is exchangeable if and only if

f(y1, . . . , yn) = f(yσ(1), . . . , yσ(n))

for all permutations σ.

We now extend the above definition of infinite sequences.

Definition 6.2. Let Y1, Y2, . . . be a sequence of random variables. We say that the sequence is

exchangeable if for any number n, the finite sequence Y1, . . . , Yn is exchangeable.

Exercise 44. Show that any iid sequence is also exchangeable.

Exercise 45. We shall now look at Pólya’s urn, which is a famous example of a sequence which

is exchangeable but not iid. Suppose we have α red and β blue marbles in an urn. We repeatedly

select a marble from the urn at random, look at it, and then return the marble, along with another

marble of the same colour. Let Yi = 1 if the ith marble drawn is red, and Yi = 0 if it is blue.

(a) Show that Y1 and Y2 are not independent. Conclude that the sequence of Yi cannot be iid.

(b) Write down the probability that we first draw k red marbles, followed by n− k blue marbles.
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(c) Show that the probability you calculated in (b) remains the same if you permute the draws.

That is, the first n draws forms an exchangeable sequence. Conclude that the entire sequence of

draws must be exchangeable.

From the previous exercise, we see that exhangeable sequences are not always iid. De Finetti’s

theorem builds a bridge between exchangeable and iid sequences, via the existence of a hyperpa-

rameter and a prior distribution. We state the theorem here only for binary random variables (like

we saw in the Pólya urn example), but note that the theorem holds in much more general settings

as well.

Theorem 6.1. Let Y1, Y2, . . . be an infinite exchangeable sequence of binary random variables.

Then there exists a random variable θ ∈ [0, 1] such that conditined on θ, the sequence Y1, Y2, . . .

are iid Bernoulli random variables with parameter θ. Furthermore, θ = limn→∞
1
n

∑n
i=1 Yi.

Let us expand a bit more on de Finetti’s theorem to make sure we understand it fully. Let π(y)

denote the pmf of the first n variables y = (y1, . . . , yn) in the sequence. Then the theorem states

that there exists a cdf F (θ) on [0, 1] such that

π(y) =

∫ 1

0

{
n∏

i=1

π(yi | θ)

}
dF (θ), (6.1)

where each π(yi | θ) = θyi(1 − θ)1−yi . You might not be too familiar with the idea of integrating

with respect to a distribution, but if θ has a density π(θ), then dF (θ) = π(θ) dθ, so that (6.1)

simplifies to

π(y) =

∫ 1

0

π(θ)π(y | θ) dθ,

where π(y | θ) =
∏n

i=1 π(yi | θ). Hence, de Finetti’s theorem tells us that for any exchangeable

sequence, there is an underlying Bayesian model such that π(y) is the marginal likelihood of that

model. This basically tells us that the Bayesian perspective naturally arises whenever we are

dealing with exchangeable data. It is important to note, however, that the theorem does not tell

us what the prior π(θ) is. It merely asserts its existence.

Exercise 46. According to de Finetti’s theorem, there should be an underlying parameter θ in

the Pólya urn model such that (6.1) holds. Show that in fact θ ∼ Beta(α, β) is the correct prior.

That is, show that the probability that you found in Exercise 45 can be written in the form (6.1),

with dF (θ) = Beta(θ;α, β) dθ.

An important point to make is that de Finetti’s theorem only holds for infinite exchangeable

sequences, as the next exercise4 illustrates.

Exercise 47. Let Y1 and Y2 be random variables satisfying

P(Y1 = 0, Y2 = 1) = P(Y1 = 1, Y2 = 0) =
1

2
,

P(Y1 = Y2 = 0) = P(Y1 = Y2 = 1) = 0.

Verify that (Y1, Y2) is an exchangeable sequence but that de Finetti’s theorem does not apply.
4originally taken from Diaconis and Freedman (1980).
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7 The Bernstein-von Mises theorem

This section builds on van der Vaart (1998, Chapter 10).

We have now come to the second part of our theoretical interlude, in which we will look at (but not

prove) the celebrated Bernstein–von Mises theorem, which bridges the gap between the frequentist

and Bayesian perspectives as the sample size n grows to infinity. Before introducing the theorem

itself, let us look at the frequentist story, which you may have seen before. A key property of

MLEs is their asymptotic normality, which, in the simplest case, can be summarised as follows.

Let y = (y1, . . . , yn) be a vector of iid data from a smooth density π(y | θ) depending on a parameter

θ (no priors here, we are in the frequentist world). Letting θ̂n denote the MLE, we have that

√
n
(
θ̂n − θ

)
d−→ Z ∼ N(0, I(θ)−1), (7.1)

where
d−→ denotes convergence in distribution.

The above basically tells us that we can approximate

θ̂n ≈ N

(
θ,

1

n
I(θ)−1

)
,

which provide a universal recipe for constructing confidence intervals for the parameter θ of interest.

As Bayesians, we impose a prior distribution π for θ and ask whether the distribution of the variable√
n(θ − θ̂n) | y is approximately normal with the same mean and variance. The key to be able

to answer this question will be to study the distance between the distribution N(θ̂n, I−1(θ0)/n)

and the posterior π(θ | y). Hence, we need some notion of distance between two probability

distributions, which we will now define.

Definition 7.1. Let P and Q be two probability measures on a measurable space (Ω,F ). The

total variation distance δ(P,Q) is given by

δ(P,Q) = sup
A∈F
|P (A)−Q(A)| .

That is, the maximal distance between the probabilities that P and Q can assign to the same

event. Note that δ is symmetric, so δ(P,Q) = δ(Q,P ).

Exercise 48. It turns out that if P and Q emit densities p and q, then the total variation distance

between P and Q can be written as

δ(P,Q) =
1

2

∫
R
|p(x)− q(x)| dx. (7.2)

The point of this exercise is to verify relation (7.2).

(a) Let

B = {p ≥ q} = {x ∈ R : p(x) ≥ q(x)}.

By splitting the integral in (7.2) into two integrals over B and R \B, verify the “≥” part.
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(b) We will now prove the other inequality, which is a bit more difficult. We break it down into

several easier steps. Show first that∫
B

{p(x)− q(x)} dx =

∫
R\B
{q(x)− p(x)} dx.

(c) Next, show that for any (measurable) set A, we have∫
A

{p(x)− q(x)} dx ≤
∫
B

{p(x)− q(x)} dx,

and use this, along with the result in (b), to show that∫
A

{p(x)− q(x)} dx ≤ 1

2

∫
R
|p(x)− q(x)| dx.

(d) Argue from symmetry that∫
A

{q(x)− p(x)} dx ≤ 1

2

∫
R
|p(x)− q(x)| dx.

(e) Put (c) and (d) together to conclude that indeed

δ(P,Q) = sup
A∈F

∣∣∣∣∫
A

{p(x)− q(x)} dx
∣∣∣∣ ≤ 1

2

∫
R
|p(x)− q(x)| dx.

Now, having introduced the total variation distance between two probability measures, we are

ready to state the Bernstein–von Mises theorem. Let Pθ0 denote the distribution of y given that

the true parameter θ0 is used. The Bernstein-von Mises theorem studies the distance

δ

(
π(· | y),N(θ̂n,

1

n
I−1
θ0

)

)
,

which we note is itself a random variable, since it is a function of the data y.

Theorem 7.1 (Bernstein-von Mises). Under the above setup and mild regularity conditions, we

have that

δ

(
π(· | y),N(θ̂n,

1

n
I−1
θ0

)

)
Pθ0−−→ 0. (7.3)

That is, as the number n of data points grows, the distance between the posterior distribution and

the distribution N(θ̂n, I−1
θ0

/n) converges to zero in probability under the data model with θ = θ0.

Exercise 49.

(a) In what way does the Bernstein von-Mises theorem justify the Laplace approximation?

(b) It looks like the frequentist and Bayesian statisticians will agree on most questions when

the data are sufficiently numerous. Can you nevertheless think of questions where they will

always differ in their conclusions, regardless of the magnitude of the sample size? Hint: See

Section 4.
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8 Markov chain Monte Carlo (MCMC)

We will now study the topic of Markov chain Monte Carlo (MCMC), which has been a crucial

development for Bayesian methods over the last 30+ years. Let us recall the definition of the

posterior density,

π(θ | y) = π(θ)π(y | θ)
π(y)

=
π(θ)π(y | θ)∫

π(θ′)π(y | θ′) dθ′
.

In most applications, both the prior π(θ) and the likelihood π(y | θ) are well-behaved and can

be evaluated directly. However, unless we use a conjugate prior, the marginal likelihood π(y) will

be difficult to evaluate, or even to approximate accurately. This is the fundamental challenge of

Bayesian statistics, and makes posterior inference difficult.

The main idea behind MCMC methods is to instead try to generate a sample θ1, . . . , θS ∼ π(· | y)
approximately from the posterior, bypassing evaluations of its density altogether. This is done

by constructing a clever Markov chain, whose long term behaviour mimics that of the posterior

distribution. Since the Markov chain is not an exact iid posterior sample, MCMC is an example

of an approximate inference technique. However, it works very well in practice, and is relatively

straight-forward to implement once we have understood the fundamental ideas. We start with the

theory of Markov chains in a general state space.

8.1 General state space Markov chains

Definition 8.1. Let X1, X2, . . . be a sequence of random variables taking values in a set Ω, called

the state space. We say that the sequence is a Markov chain if, for all n and all (measurable) sets

A,

P(Xn+1 ∈ A | X1 = x1, . . . , Xn = xn) = P(Xn+1 ∈ A | Xn = xn). (8.1)

That is, when generating Xn+1, knowing the previous step in the chain is equivalent to knowing

the entire previous history. We have in some sense “forgotten” all the history of the chain apart

from the previous step.

Definition 8.2. We say that a Markov chain {Xn} is homogeneous if the transition probabilities

P(Xn+1 ∈ A | Xn = xn) are independent of n. In this case, we can specify the chain by the initial

distribution P1 of X1, and the kernel k of the chain, defined by

k(x,A) = P(Xn+1 ∈ A | Xn = x).

Note that k does not depend on n by assumption. In many cases, the kernel emits a density, and

we write

k(x,A) =

∫
A

k(x, y) dy,

so it will be clear from context whether k(·, ·) refers to the transition distribution or to its density.

Henceforth, we will only study homogeneous Markov chains.

Exercise 50. Explain why
∫
Ω
k(x, y) dy = 1.
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Example 2.

(a) Let P1 = N(0, 1) and let k(x, y) = N(y;x, σ2) be the transition density, for some fixed σ > 0.

Then {Xn} is a homogeneous Markov chain with a Gaussian kernel.

(b) Let P1 = N(0, 1) and let 0 < α < 1. Consider the kernel

k(x,A) = αPx(A) + (1− α)δx(A),

where Px is a fixed probability distribution (allowed to depend on x) and δx is the degenerate

distribution at x. We can think of this kernel as follows. At each step in the chain, we generate

a proposal x′ ∼ Px, which is accepted with probability α. Otherwise, it is rejected, and the

chain stays at the previous value x.

Note that strictly speaking, this kernel does not emit a density due to the presence of the

degenerate distribution. However, we can abuse notation slightly using the Dirac delta

function, so that if Px has density px, we can write

k(x, y) = αpx(y) + (1− α)δx(y).

Exercise 51.

(a) Show that

P(X1 ∈ A1, . . . , Xn ∈ An) =

∫
A1×···×An

p1(x1)
n−1∏
i=1

k(xi, xi+1) dx1 . . . dxn,

where p1 is the density of P1.

(b) Show further that the m-step transition probabilities can be written as

km(xn, A) = P(Xn+m ∈ A | Xn = xn) =

∫
A

km(xn, xn+m) dxn+m,

where

km(xn, xn+m) =

∫
Ωm−1

m−1∏
i=0

k(xn+i, xn+i+1) dxn+1 · · · dxn+m−1

is the m-step kernel.

8.2 Key properties

Recall that our goal is to construct a Markov chain whose long term behaviour mimics that of the

posterior distribution. It turns out that when it comes to study long term behaviour, some chains

are better than others. In this section, we will go through some key properties a chain must satisfy

for us to be able to study its asymptotic properties. We start with irreducibility and aperiodicity.
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Definition 8.3. We say that a Markov chain with kernel k is µ-irreducible if for any point x ∈ Ω

and any (µ-measurable) set A ⊆ Ω such that µ(A) > 0, we have

km(x,A) > 0 for some m ≥ 1.

That is, for any subset A to which µ assigns a nonzero probability, there is a positive probability

that we can reach A from x in a finite number of steps. Note in particular that the chain is

automatically irreducible if k(x,A) > 0 for all x and A.

Exercise 52. Verify that the chains from Example 2 are irreducible.

Definition 8.4. We say that a Markov chain {Xn} is periodic with period d ≥ 2 if there exists a

(measurable) partition5 S1, . . . ,Sd of the state space Ω such that

P(Xn+m ∈ Sj | Xn ∈ Si) =

{
1 if j − i = m mod d

0 otherwise.

The chain is aperiodic if it is not periodic.

That is, a Markov chain with period d moves through S1,S2, . . . ,Sd and back to S1 in loops with

probability one.

Exercise 53.

(a) Verify that the chains from example 2 are aperiodic.

(b) Show that any chain with k(x, {x}) > 0 for all x ∈ Ω is aperiodic.

(c) Construct an irreducible chain which is 2-periodic.

Let us now turn to the question of examining the long term behaviour of a Markov chain. Suppose

we run the chain for a very long time. For some chains, it will look like the states are drawn from

some distribution, say π. For example, the empirical mean of the states in the chain, (1/n)
∑n

i=1Xi,

will converge to the mean Eπ[X], etc. In order to make this notion precise, we need to introduce

the idea of a stationary distribution.

Definition 8.5. We say that π is a stationary distribution (or invariant distribution) for the

Markov chain {Xn} if ∫
Ω

π(x)k(x, y) dx = π(y) (8.2)

for all y ∈ Ω.

This definition tells us that if π is stationary for {Xn} and Xn ∼ π, then Xn+1 ∼ π. Indeed, letting

πn+1 denote the density of Xn+1, we have

πn+1(xn+1) =

∫
Ω

π(xn)πn+1(xn+1 | xn) dxn =

∫
Ω

π(xn)k(xn, xn+1) dxn = π(xn+1),

5Recall that a partition of a set Ω is a collection of non-empty, disjoint subsets whose union is Ω.
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so πn+1 = π, as required.

In practice, it can be very difficult to verify condition (8.2). Fortunately, there exists an only

slightly stronger condition, called detailed balance, which is much easier to verify and always

implies stationarity.

Definition 8.6. Let π be a probability distribution and let k be a kernel. We say that k and π

satisfy detailed balance if

π(x)k(x, y) = π(y)k(y, x)

for all x, y ∈ Ω.

Exercise 54. Show that if k and π satisfy detailed balance, then π is stationary for k.

For irreducible Markov chains, π-stationarity is a sufficient for guaranteeing a property called

ergodicity, which basically asserts that the law of large numbers holds for the chain.

Theorem 8.1. Suppose a Markov chain {Xn} is π-irreducible and that its kernel k has stationary

distribution π. Then almost surely, for any integrable function f : Ω→ R, we have

lim
n→∞

1

n

n∑
i=1

f(Xi) =

∫
Ω

f(x)π(x) dx = Eπ[(f(X)],

for π-almost all6 starting values x.

If we have aperiodicity also then we can state an even stronger convergence result.

Theorem 8.2. Suppose an aperiodic Markov chain {Xn} is π-irreducible and that its kernel k has

stationary distribution π. Then

lim
n→∞

∫
Ω

|kn(x, y)− π(y)| dy = 0

for π-almost all starting values x.

Note that by Exercise 48, this means that

lim
n→∞

δ(kn(x, ·), π) = 0

for π-almost all starting values x. That is, the total variation distance between the chain and the

distribution π converges to zero as n→∞.

The study of which conditions guarantee what modes of convergence for Markov chains is a rich

field of study. For example, we might ask what condition is necessary to remove the “for π-almost

all x” condition. It turns out that the answer is a condition known as Harris recurrence, but this

is beyond the scope of the course.

The main takeaway for us is the following: If we have a general state space Markov chain {Xn}
which is (i) π-irreducible, (ii) aperiodic, and (iii) has π as a stationary distribution, then we can

assert that the long term behaviour of the chain will mimic that of iid samples from π. In the next

section, we will look at chains which are constructed such that the stationary distribution π will

be the posterior distribution, so that if we run these chains long enough, they will converge to the

posterior.

6That is, for all values x except from a subset S with π(S) = 0.
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8.3 The Metropolis-Hastings algorithm

Having gone through our introduction to general state space Markov chains, we are now ready

to see how they can be applied in Bayesian analysis. The first phenomenon we shall look at is

the Metropolis-Hastings algorithm, whose roots date back to Metropolis et al. (1953), but whose

current form was first published by Hastings (1970).

Let us first through through the Metropolis-Hastings algorithm in its general form before looking at

posterior inference in Bayesian statistics specifically. We now turn back to the lower case notation

convention, as this makes everything less cluttered. Suppose we have a target density π(x) that we

wish to sample from which we can evaluate pointwise. We want to construct a Markov chain {xn}
which converges to π. The first element of the chain is generated by some distribution x1 ∼ P1.

Suppose now that the current state in the chain is xn = x. How do we generate xn+1? The first

step is to draw a sample x′ from a proposal distribution with density q(x′ | x), which is allowed to

depend on the current state x. This value is then either accepted with probability

α(x′ | x) = min

{
1,

π(x′)q(x | x′)

π(x)q(x′ | x)

}
,

in which case we set xn+1 = x′. Otherwise, it is rejected, and the chain stays where it was, so

xn+1 = xn = x. The minimum operator ensures that α(x′ | x) ≤ 1, so it is a valid probability.

The Metropolis-Hastings algorithm is given in pseudo-code in Algorithm 1.

Exercise 55. Verify that step 6 in Algorithm 1 is correct even though it is possible that α(x′ |
x) > 1 here.

To study the properties of the Metropolis-Hastings algorithm, we need to identify its kernel. The

probability of accepting the proposed value, given that the current state of the chain is x, is given

by

α(x) =

∫
α(x′ | x)q(x′ | x) dx′. (8.3)

In this case, we accept the proposal. Otherwise, with probability 1− α(x), we stay where we are.

Hence the kernel takes the form

k(x, y) = α(y | x)q(y | x) + [1− α(x)]δx(y). (8.4)

Exercise 56.

(a) Show that if the proposal q(y | x) is a Gaussian distribution centred at x, N(y;x, σ2), then

the Metropolis-Hastings kernel is irreducible.

(b) Show that the Metropolis-Hastings kernel is always aperiodic.

We now want to show that the target distribution π is stationary for the Metropolis-Hastings

kernel. We do this by verifying the detailed balance equation,

π(x)k(x, y) = π(y)k(y, x).
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Algorithm 1 Metropolis-Hastings

Require: Initial distribution P1

Require: Proposal distribution q

Require: Target density π

Require: Sample size N

1: x1 ∼ P1

2: S ← {x1} ▷ Initialise sample

3: for n = 1, . . . , N − 1 do

4: x← xn

5: x′ ∼ q(x′ | x) ▷ Generate proposal

6: Calculate acceptance probability

α(x′ | x)← π(x′)q(x | x′)

π(x)q(x′ | x)

7: u ∼ Uniform[0, 1]

8: if u ≤ α(x′ | x) then
9: xn+1 ← x′ ▷ Accept proposal

10: else

11: xn+1 ← x ▷ Reject proposal

12: end if

13: S ← S ∪ {xn+1} ▷ Update sample

14: end for
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It suffices to prove this when x ̸= y. Indeed, if x = y then detailed balance is trivially satisfied.

When x ̸= y, the kernel (8.4) simplifies to the first term α(y | x)q(y | x), and so we have

π(x)k(x, y) = π(x)α(y | x)q(y | x)

= π(x)q(y | x)min

{
1,

π(y)q(x | y)
π(x)q(y | x)

}
= min {π(x)q(y | x), π(y)q(x | y)}

= π(y)q(x | y)min

{
π(x)q(y | x)
π(y)q(x | y)

, 1

}
= π(y)q(x | y)α(x | y)
= π(y)k(y, x).

Hence, we see that detailed balance is verified, and so the target distribution π is stationary for

the Metropolis-Hastings algorithm. Hence, if we choose a proposal which yields irreducibility of

the chain, we know that the long term behaviour of the chain will resemble that of the target

distribution π.

In Bayesian statistics, we want to apply the Metropolis-Hastings algorithm to posterior inference.

That is, we want to create a chain θ1, θ2, . . . using the Metropolis-Hastings algorithm with some

proposal q(θ′ | θ) to target the posterior distribution π(θ | y). At this point, you might be worried

that this will require pointwise evaluations of the posterior in computing the acceptance probability

α(θ′ | θ). This, in turn, will require evaluations of the marginal likelihood π(y), which is the thing

we are trying to avoid in the first place. However, there is a crucial simplification taking place in

the acceptance probability. By Bayes’ theorem,

α(θ′ | θ) = min

{
1,

π(θ′ | y)q(θ | θ′)
π(θ | y)q(θ′ | θ)

}
= min

{
1,

[π(y | θ′)π(θ′)/π(y)]q(θ | θ′)
[π(y | θ)π(θ)/π(y)]q(θ′ | θ)

}
= min

{
1,

π(y | θ′)π(θ′)q(θ | θ′)
π(y | θ)π(θ)q(θ′ | θ)

}
,

so we see that the marginal likelihoods cancel and so we only require evaluations of the prior, the

likelihood and the proposal, all of which are available to us.

Appreciate the generality and simplicity of the above construction. There are virtually no restric-

tions on the choice of prior and likelihood here. This is in stark contrast to conjugate priors, which

we require to be of the same functional form as the likelihood.

Exercise 57. Go back to exercise 3. Letting y be the data given in part (d), use the Metropolis-

Hastings algorithm to generate an approximate posterior sample using the following priors:

• θ ∼ Gamma(0.1, 0.1),

• θ ∼ Uniform[0.5, 50],

• θ ∼ LogNormal(0, 1), which means that log θ ∼ N(0, 1).
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Run the algorithm for S = 10, 000 iterations with a simple Gaussian proposal. You will have to

think about what happens whenever we propose a negative value θ′ < 0 here.

Exercise 58. Return to the sinusoidal.csv dataset, with the cubic regression model. Instead

of employing empirical Bayes, impose now a simple prior on both hyperparameters α and β,

say α, β ∼ Exp(1), independently. Simulate the posterior distributions of α and β, and use

these simulations to simulate the posterior distribution of the coefficients w and the predictive

distribution of a new outcome y′. Compare your results with those you obtained when using

empirical Bayes.

8.4 Gibbs sampling

We have already seen the Metropolis-Hastings algorithm, which is one of the most fundamental

algorithms of MCMC. We shall now move on to another MCMC technique, known as Gibbs

sampling, which is particularly useful when the target distribution of interest is multivariate. For

example, suppose we have two random variables x and y. There are many situations where it is

difficult to sample from the joint distribution π(x, y), but it is straightforward to sample from the

conditional distributions π(x | y) and π(y | x). In the context of Bayesian inference, this would

typically manifest itself as a multidimensional parameter θ = (θ1, . . . , θp) with a complicated joint

posterior π(θ | y), but where the conditional distributions

π(θj | θ−j, y)

are easy to sample from. Here, θ−j is the vector we obtain by deleting component j from θ. That

is,

θ−j = (θ1, θ2, . . . , θj−1, θj+1, . . . , θp).

Exercise 59. Suppose we have n counts y1, . . . , yn which we assume are independent and follow a

Poisson distribution. However, we suspect there is a changepoint τ in the data, so that the Poisson

parameter before and after the point τ are different. That is, we assume

yi | {τ, λl} ∼ Poisson(λl) independently for i = 1, . . . , τ,

yi | {τ, λr} ∼ Poisson(λr) independently for i = τ + 1, . . . , n.

The parameters of the model are therefore the changepoint τ and the two Poisson parameters λl

and λr. As priors, we let

τ ∼ Uniform{1, 2, . . . , n},
λ1 ∼ Gamma(α, β),

λ2 ∼ Gamma(α, β),

independently of each other. The aim of the problem is to infer the location of the changepoint τ

and the Poisson parameters λl, λr on either side.

(a) Write down the log posterior distribution for θ = (λl, λr, τ) given the data y, up to a constant.
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(b) The joint posterior you found in the previous exercise is difficult to sample from directly.

Find the three conditional distributions of λl and λr given everything else,

π(λl | λr, τ, y), π(λr | λl, τ, y), π(τ | λl, λr, y).

We are now ready to explain the Gibbs sampling algorithm. To keep the notation uncluttered, let

us stick to the case where p = 2, so we have two random variables x and y whose joint distribution

πX,Y (x, y) is our target. We assume that sampling directly from πX,Y is difficult, but that we can

sample from the conditional distributions πX|Y and πY |X . Gibbs sampling basically says that if we

continuously sample from these conditional distributions repeatedly, then we eventually converge

to the joint distribution πX,Y . The algorithm (for p = 2) is given in Algorithm 2

Algorithm 2 Gibbs (two-dimensional)

Require: Initial sample (x1, y1).

Require: Conditional distributions πX|Y , πY |X .

Require: Sample size N

1: S ← {(x1, y1)} ▷ Initialise sample

2: for n = 1, . . . , N − 1 do

3: xn+1 ∼ πX|Y (· | yn)
4: yn+1 ∼ πY |X(· | xn+1)

5: S ← S ∪ {(xn+1, yn+1)} ▷ Update sample

6: end for

Note that when we sample yn+1 from the conditional distribution in step 4, we condition on

X = xn+1, not xn. Thus, Gibbs sampling sequentially updates all the variables, conditioning on

the latest information.

Exercise 60. Generalise Algorithm 2 to the three-dimensional case.

Note that there is no accept/reject step in Gibbs sampling. We always accept the proposed sample.

From Algorithm 2, we see that Gibbs sampling creates a Markov chain with the kernel

k((x, y), (x′, y′)) = πX|Y (x
′ | y)πY |X(y

′ | x′). (8.5)

Proposition 8.1. The joint distribution πX,Y is stationary for the Gibbs sampler.

Proof. We have∫
πX,Y (x, y)k((x, y), (x

′, y′)) dx dy =

∫
πX,Y (x, y)πX|Y (x

′ | y)πY |X(y
′ | x′) dxdy

= πY |X(y
′ | x′)

∫
πY (y)πX|Y (x

′ | y) dy

= πY |X(y
′ | x′)

∫
πX,Y (x

′, y) dy

= πY |X(y
′ | x′)πX(x

′)

= πX,Y (x
′, y′),

as required.
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Hence, provided we have irreducibility and aperiodicity, the Gibbs sampler will converge to the

joint distribution πX,Y . Note, however, that in general, the Gibbs kernel does not satisfy detailed

balance in general. On the other hand, the Gibbs kernel consists of two parts, namely the x-update

and the y-update7. Separately, these updates have the kernels

k1((x, y), (x
′, y′)) = πX|Y (x

′ | y)δy(y′),
k2((x, y), (x

′, y′)) = πY |X(y
′ | x)δx(x′).

(8.6)

Exercise 61. Show that the joint distribution πX,Y satisfies detailed balance for both kernels k1
and k2.

A natural question to ask at this point is whether there is any direct link between Gibbs sampling

and the Metropolis-Hastings algorithm. In order to answer this question, we need to consider

what happens when we combine two Markov chain kernels k1 and k2 with the same stationary

distribution π.

Proposition 8.2. Let k1(x, y) and k2(x, y) be two Markov chain kernels with the same stationary

distribution π(x). Then π is also stationary for the combination of k1 and k2, defined by

k1k2(x, y) =

∫
k1(x, x

′)k2(x
′, y) dx′.

Proof. We have ∫
π(x)k1k2(x, y) dx =

∫ ∫
π(x)k1(x, x

′)k2(x
′, y) dx′ dx

=

∫ ∫
π(x)k1(x, x

′) dx︸ ︷︷ ︸
π(x′)

k2(x
′, y) dx′

=

∫
π(x′)k2(x

′, y) dx′

= π(y),

as required.

The above proof also generalises to the case where p ≥ 3. We thus see that if we have multiple

Markov chain kernels with the same stationary distribution π, then we can combine them to obtain

another chain whose stationary distribution is still π.

It turns out that we can view the separate Gibbs kernels (8.6) as Metropolis-Hastings kernels,

which means that the full Gibbs kernel (8.5) corresponds to a combination of Metropolis-Hastings

kernels. Indeed, the separate kernels take the form of a proposal. But if they are Metropolis-

Hastings kernels, why is there no accept/reject step in the kernels? To see why, consider the

7In the general p-dimensional case, there are p updates
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acceptance probability for the separate Gibbs kernels, e.g. k1. We have

α((x′, y′) | (x, y)) = min

{
1,

πX,Y (x
′, y′)πX|Y (x | y′)δy′(y)

πX,Y (x, y)πX|Y (x′ | y)δy(y′)

}
= min

{
1,

πX,Y (x
′, y′)πX,Y (x, y)δy′(y)/π(y)

πX,Y (x, y)πX,Y (x′, y′)δy(y′)/π(y)

}
= min{1, 1}
= 1,

so the acceptance probability is always 1 and we therefore always accepts the proposed sample.

This concludes our discussion about the connection between the Gibbs sampler and the Metropolis-

Hastings algorithm.

Exercise 62.

(a) Let k1(x, y) and k2(x, y) be two Markov chain kernels with the same stationary distribution

π(x). For any fixed number γ ∈ (0, 1), show that π is also stationary for the mixture kernel

k(x, y) = γk1(x, y) + (1− γ)k2(x, y).

(b) Generalise the above argument to p kernels. That is, suppose π is a stationary distribution

for γ separate kernels k1, . . . , kp, and let γ1, . . . , γp be numbers satisfying γj ≥ 0 for all

j = 1, . . . , p, and
∑p

j=1 γj = 1. Show that π is also stationary for the kernel

k(x, y) =

p∑
j=1

γjkj(x, y).

(c) Consider the random scan Gibbs sampler, in which we choose uniformly at random which

component to update at each iteration. For example, in the two-dimensional case, at each

iteration, we either sample from πX|Y or πY |X , each with probability 1/2. Conclude from parts

(a) and (b) that this sampler has the joint distribution πX,Y as its stationary distribution.

Exercise 63. Return to Exercise 59. Apply this model to the mining.csv dataset, which lists

the number of coal mining disasters in the UK between 1851 and 1962. Set α = β = 1.

(a) Use Gibbs sampling to get a posterior sample of the parameters τ, λ1, λ2, using S = 1000

iterations. What is the posterior mode of τ? What does this value represent?

(b) Consider also the model where there is no changepoint, so there is only a single parameter

λ across the entire dataset. Find the posterior distribution of λ given the data (using e.g.

exercise 3) and plot its density in a histogram. Compare your results to those you obtained

in part (a).

(c) What ingredient is missing to compare the models in parts (a) and (b), i.e. to address

whether there is a changepoint present in the data?
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8.5 Convergence diagnostics

In the previous section, we saw how to set up and run MCMC algorithms for posterior inference. In

this section, we shall see how we can assess the quality of their output via convergence diagnostics.

This is important, because MCMC is not an exact algorithm for posterior sampling, it yields only

an approximation. We therefore need to develop tools to assess the quality of that approximation.

Let us think about the two things that could go wrong in an MCMC algorithm, as a consequence of

it being an approximate sampling technique. Firstly, the chain may not have reached equilibrium.

Note that even though we have a theoretical guarantee that the chain will converge to its stationary

distribution asymptotically, we have no guarantee that this will happen in finite time for a finite

chain. Secondly, the correlation between terms in the chain might be high, and will affect the

variance of our estimates. Indeed, suppose we want to estimate some function f(X) from an

MCMC output X1, X2, . . . , XS. Then we would use the empirical estimate

f̄S =
1

S

S∑
s=1

f(Xs), (8.7)

and so we need to ensure that S is large enough to make the variance of f̄S small.

A bad practice, which many students and even some researchers are guilty of, is to simply state for

how long the algorithm was run. If someone has run their algorithm for S = 100, 000 iterations,

we still have no information about the convergence and autocorrelation properties of the chain.

Let us first look at how we mitigate the problem of convergence to equilibrium. A standard solution

for this is to delete a small proportion of the chain, usually called burn-in. To see how long burn-in

should be, we usually draw trace plots of the chain (that is, a plot of the values taken by the chain

over time), which allows us to see where mixing starts to improve.

Exercise 64. Return to your analysis from exercise 57 with the uniform prior. Make trace plots

of the samples, and see how they change as you vary the variance of the Gaussian proposal

distribution. What do you observe?

The next question is how to assess the autocorrelation of the chain. The simplest way to do this

is to plot the autocorrelation as a function of lag. More specifically, suppose we have a Markov

chain X1, . . . , XS, starting at equilibrium. That is, through the rest of this section, we assume that

X1 ∼ π, the stationary distribution. Suppose we want to estimate a function f(X). For r > s,

define the correlation of f at lag r to be

ρr =
cov(f(Xs), f(Xs+r))

Var(f(Xs))
. (8.8)

Note that ρr only depends on r since the chain is assumed to start at its stationary distribution.

In order to estimate ρr, we estimate the numerator and denominator of (8.8) separately. For the

numerator γr = cov(f(Xs), f(Xs+r)), use

γ̂r =
1

S

S−r∑
i=1

(f(Xi)− f̄S)(f(Xi+r)− f̄S), (8.9)
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where f̄S is defined by (8.7). There are reasons for why we divide by S rather than S − r in

(8.9), but we will not go into those here. Plugging r = 0 into (8.9) gives γ̂0, an estimate of

σ2 = Var(f(Xs)). Thus, our estimate for ρr is γ̂s/γ̂0. Note that σ2 does not depend on s since we

assume that the chain is stationary to begin with.

Exercise 65. Continue the analysis from exercise 57. This time, plot the autocorrelation of the

samples as a function of the lag. Try different values for the variance of the proposal. What do

you observe?

The derivation of ρr leads another summary of the quality of the MCMC output, called the effective

sample size (ESS). In short, the ESS tells us how many iid samples from the target distribution we

would have needed to achieve the same variance for f̄S as when we use samples from the Markov

chain. That is,

Var(f̄S) =
Var(f(Xs))

ESS
=

σ2

ESS
. (8.10)

We therefore need an estimate of Var(f̄S) to estimate ESS. We have

Var(f̄S) =
1

S2

S∑
i=1

S∑
j=1

cov(f(Xi), f(Xj))

=
σ2

S2

S∑
i=1

S∑
j=1

ρ|i−j|

=
σ2

S

[
1 + 2

S−1∑
r=1

(
1− r

S

)
ρr

]
, (8.11)

and thus we obtain an estimate for ESS,

ÊSS = S

[
1 + 2

S−1∑
r=1

(
1− r

S

)
ρ̂r

]−1

. (8.12)

It should be noted that there are more sophisticated ways of calculating the effective sample size,

so you may observe that standard packages in Python or R gives different answers than (8.12).

However, the above derivation, although reasonable simple, outlines the meaning of the effective

sample size and how to estimate it from data.

Exercise 66. Go once more back to your output from exercise 57. Calculate the effective sample

size for different values of the variance of the proposal.

To summarise, we have the following tools for mitigating convergence and mixing issues when

running MCMC:

1. Multiple runs: Run the algorithm multiple times with different inputs, and check that we

obtain the same results each time, to our desired accuracy.

2. Trace-plots: Plot the output of the algorithm. Check that we have reached the stationary

distribution and that the chain is mixing well.
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3. Burn-in: Delete a small proportion of the samples from the beginning of the chain which

are not from the stationary distribution.

4. Autocorrelation plots: Plot the autocorrelation function against lag and verify that we

have a quick drop-off.

5. Effective sample size: Make sure this is sufficiently large.
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