
STK4021 Solutions - Exercises 11 and 12

By Dennis Christensen

Exercise 11. This exercise introduces the binomial distribution, and looks at conjugate priors.

(a) Let y = (y1, . . . , yn), where all the yi are iid Bernoulli variables with parameter θ, with

density

fθ(yi) = θyi(1− θ)1−yi ,

for yi ∈ {0, 1}. Verify that E[yi] = θ and that Var(yi) = θ(1− θ).

(b) Write down the log-likelihood for the full data y and verify that the maximum likelihood

estimator θ̂ for θ is the sample mean.

(c) Now let m be the number of observations with yi = 1. In other words, m =
∑n

i=1 yi, a

sum of independent Bernoulli trials. We know that m follows the Binomial distribution,

m | θ ∼ Binomial(θ, n), with density

fθ(m) =

(
n

m

)
θm(1− θ)n−m,

for m = 0, 1, . . . , n.

Verify that E[m] = θn and Var(m) = θ(1− θ)n.

(d) Now verify that the conjugate prior for θ is the Beta distribution Beta(a, b), with density

π(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1,

where a, b > 0. Show also that

E[θ] =
a

a+ b
, Var(θ) =

ab

(a+ b)2(a+ b+ 1)
.

(e) (Based on Bishop (2006, chapter 2)) Although the Beta prior and the binomial likelihood

clearly share the same functional form as a function of θ, it is less obvious where the nor-

malisation constant in the Beta distribution comes from. In this exercise, we verify that this

normalisation constant is correct. We need to show that∫ 1

0

sa−1(1− s)b−1 ds =
Γ(a)Γ(b)

Γ(a+ b)
,
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where we recall the definition of the Gamma function,

Γ(a) =

∫ ∞

0

xa−1e−x dx.

Now, first note that

Γ(a)Γ(b) =

∫ ∞

0

xa−1 exp(−x) dx

∫ ∞

0

yb−1 exp(−y) dy

=

∫ ∞

0

xa−1

(∫ ∞

0

yb−1 exp(−(x+ y)) dy

)
dx.

Prove the normalisation by first substituting t = y + x (holding x fixed), then change the

order of integration between x and t, and finally make the substitution x = ts (holding t

fixed).

(f) Find the posterior distribution π(θ | m). Show that we can write

E[θ | m] = λE[θ] + (1− λ)θ̂

for some 0 ≤ λ ≤ 1 which you should identify. What happens to E[θ | m] as the number of

observations goes to infinity?

Solution.

(a) We have

E[yi] = 0× P(yi = 0) + 1× P(yi = 1) = 0 + fθ(1) = θ

E[y2i ] = 02 × P(yi = 0) + 12 × P(yi = 1) = 0 + fθ(1) = θ,

so that

Var(yi) = E[y2i ]− E[y2i ] = θ − θ2 = θ(1− θ).

(b) The log-likelihood is given by

ℓ(θ) = log

{
n∏

i=1

θyi(1− θ)1−yi

}

=
n∑

i=1

log
{
θyi(1− θ)1−yi

}
=

n∑
i=1

{yi log θ + (1− yi) log(1− θ)}

= nȳ log θ + (n− nȳ) log(1− θ).

To find the MLE, we solve ℓ′(θ) = 0.

nȳ

θ
− n− nȳ

1− θ
= 0

nȳ(1− θ)− (n− nȳ)θ = 0

nȳ − nθ = 0

θ = ȳ,
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so the MLE is indeed θ̂ = ȳ. If we want to be scrupulous here, we can also verify that indeed,

ℓ′′(θ) =
n∑

i=1

{
− yi
θ2

− 1− yi
(1− θ)2

}
= − 1

θ2(1− θ)2

n∑
i=1

{
yi(1− θ)2 + (1− yi)θ

2
}
≤ 0,

where this inequality follows from the fact that

y(1− θ)2 + (1− y)θ2 =

{
(1− θ)2 if y = 1

θ2 if y = 0.
,

which is non-negative in either case.

(c) By linearity of expectation, we have

E[m] = E

[
n∑

i=1

yi

]
=

n∑
i=1

E[yi] = θn,

and by independence, we have

Var(m) = Var

(
n∑

i=1

yi

)
=

n∑
i=1

Var(yi) = θ(1− θ)n.

(d) From (b), we know that the log-likelihood is a linear combination of log θ and log(1−θ), and

so we know that the conjugate prior must satisfy

π(θ) ∝ θa−1(1− θ)b−1,

for some parameters a, b, where we need a, b > 0 for the prior density to be normalis-

able. Hence the prior is of the same functional form as a Beta density, which forces

π(θ) = Beta(θ; a, b).

(e) Following the hint, we have dt = dy and dx = t ds, and so

Γ(a)Γ(b) =

∫ ∞

x=0

xa−1

(∫ ∞

y=0

yb−1 exp(−(x+ y)) dy

)
dx

=

∫ ∞

x=0

xa−1

(∫ ∞

t=x

(t− x)b−1 exp(−t) dt

)
dx

=

∫ ∞

t=0

exp(−t)

(∫ t

x=0

xa−1(t− x)b−1 dx

)
dt

=

∫ ∞

t=0

exp(−t)

(∫ 1

s=0

(ts)a−1(t− ts)b−1t ds

)
dt

=

∫ ∞

t=0

ta+b−1 exp(−t) dt︸ ︷︷ ︸
Γ(a+b)

×
∫ 1

s=0

sa−1(1− s)b−1 ds,

and so ∫ 1

0

sa−1(1− s)b−1 ds =
Γ(a)Γ(b)

Γ(a+ b)
.
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(f) We have

log π(θ | m) = log π(θ) + log π(m | θ) + constant

= (a− 1) log θ + (b− 1) log(1− θ) + nȳ log θ + (n− nȳ) log(1− θ) + constant

= (a+ nȳ − 1) log θ + (b+ n− nȳ − 1) log(1− θ),

which forces, by functional form,

π(θ | m) = Beta(θ; a+ nȳ, b+ n− nȳ).

Thus, by the formula of the mean of a Beta distribution,

E[θ | m] =
a+ nȳ

a+ nȳb+ n− nȳ
=

a+ nȳ

a+ b+ n
.

This can be written as

E[θ | m] =

{
a+ b

a+ b+ n

}
a

a+ b
+

{
n

a+ b+ n

}
ȳ

=

{
a+ b

a+ b+ n

}
︸ ︷︷ ︸

λ

a

a+ b
+

{
1− a+ b

a+ b+ n

}
︸ ︷︷ ︸

1−λ

ȳ

= λE[θ] + (1− θ)ȳ.

We note that as n → ∞, λ → 0, and so the distance between the posterior mean and the

MLE decreases. The prior is “washed out” as the number of data points increases.

Exercise 12 (Based on Nils Lid Hjort’s exercises, # 13). The Beta-binomial model, with a Beta

distribution for the binomial probability parameter, is on the ‘Nice List’ where the Bayesian

machinery works particularly well: Prior elicitation is easy, as is the updating mechanism. This

exercise concerns the generalisation to the Dirichlet-multinomial model, which is certainly also on

the Nice List and indeed in broad and frequent use for a number of statistical analyses.

(a) Let (y1, . . . , ym) be the count vector associated with n independent experiments having m

different outcomes A1, . . . , Am. In other words, yj is the number of events of type Aj, for

j = 1, . . . ,m. Show that if the vector of P(Aj) = pj is constant across the n independent

experiments, then the probability distribution governing the count data is

f(y1, . . . , ym) =
n!

y1! · · · ym!
py11 · · · pymm ,

for y1 ≥ 0, . . . , ym ≥ 0, y1 + · · · + ym = n. This is the multinomial model. Explain how it

generalises the binomial model.

(b) Show that

EYj = npj, VarYj = npj(1− pj), cov(Yj, Yk) = −npjpk for j ̸= k.
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(c) Now define the Dirichlet distribution over m cells with parameters (a1, . . . , am) as having

probability density

π(p1, . . . , pm−1) =
Γ(a1 + · · ·+ am)

Γ(a1) · · ·Γ(am)
pa1−1
1 · · · pam−1−1

m−1 (1− p1 − · · · − pm−1)
am−1,

over the simplex where each pj ≥ 0 and p1 + · · · + pm−1 ≤ 1. Of course we may choose to

write this as

π(p1, . . . , pm−1) ∝ pa1−1
1 · · · pam−1−1

m−1 pam−1
m ,

with pm = 1 − p1 − · · · − pm−1; the point is however that there are only m − 1 unknown

parameters in the model as one knows the mth once one learns the values of the other m−1.

Show that the marginals are Beta distributed,

pj ∼ Beta(aj, a− aj) where a = a1 + · · ·+ am.

(d) Infer from this that

E pj = p0,j Var pj =
1

a+ 1
p0,j(1− p0,j),

in terms of aj = ap0,j. Show also that

cov(pj, pk) = − 1

a+ 1
p0,jp0,k for j ̸= k.

For the ‘flat Dirichlet’, with parameters (1, . . . , 1) and prior density (m−1)! over the simplex,

find the means, variances, covariances.

(e) Now for the basic Bayesian updating result. When (p1, . . . , pm) has a Dir(a1, . . . , am) prior,

then, given the multinomial data y = (y1, . . . , ym), show that

(p1, . . . , pm) | y ∼ Dir(a1 + y1, . . . , am + ym).

Give formulae for the posterior means, variances, and covariances. In particular, explain why

p̂j =
aj + yj
a+ n

is a natural Bayes estimate of the unknown pj. Also find an expression for the posterior

standard deviation of the pj.

(f) In order to carry out easy and flexible Bayesian inference for p1, . . . , pm given observed counts

y1, . . . , ym, one needs a recipe for simulating from the Dirichlet distribution. One such is as

follows: Let X1, . . . , Xm be independent with Xj ∼ Gamma(aj, 1) for j = 1, . . . ,m. Then

the ratios

Z1 =
X1

X1 + · · ·+Xm

, . . . , Zm =
Xm

X1 + · · ·+Xm

are in fact Dir(a1, . . . , am). Try to show this from the transformation law for probability

distributions: If X has density f(x), and Z = h(X) is a one-to-one transformation with

inverse X = h−1(Z), then the density of Z is

g(z) = f(h−1(z))

∣∣∣∣∂h−1(z)

∂z

∣∣∣∣
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(featuring the determinant of the Jacobian of the transformation). Use in fact this theorem

to find the joint distribution of (Z1, . . . , Zm−1, S), where S = X1 + · · · +Xm (one discovers

that the Dirichlet vector of Zj is independent of their sum S).

(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (p1, . . . , p8) is Dir(a1, . . . , a8),

show that then the collapsed vector (p1 + p2, p3 + p4 + p5, p6, p7 + p8) is Dir(a1 + a2, a3 + a4 +

a5, a6, a7 + a8).

Solution.

(a) Setting m = 2, we obtain

f(y1, y2) =
n!

y1!y2!
py11 py22 ,

where y1 + y2 = n and p1 + p2 = 1. In other words, we can parametrise this as

f(y1) =
n!

y1!(n− y1)!
py11 (1− p1)

n−y1 =

(
n

y1

)
py11 (1− p1)

n−y1 ,

which is the binomial model.

(b) Just like the binomial distribution, we can write Y = (Y1, . . . , Ym) as the sum of the results

of n independent experiments, say Y = X1 + · · ·+Xn, where each Xi ∈ {0, 1}m has exactly

one nonzero component. Note that

E[Xi] = (p1, . . . , pn),

and therefore the results for EYj and VarYj follow directly from linearity of expectation and

linearity of variance for independent variables.

Alternatively, we can prove the result directly. Without loss of generality, let j = 1. Then

we have

EY1 =
∑

y1,...,ym

y1
n!

y1! · · · ym!
py11 · · · pymm = np1

∑
y1,...,ym
y1≥1

(n− 1)!

(y1 − 1)!y2! · · · ym!
py1−1
1 py22 · · · pymm = np1.

Similarly,

E[Y1(Y1 − 1)] =
∑

y1,...,ym

y1(y1 − 1)
n!

y1! · · · ym!
py11 · · · pymm

= n(n− 1)p21
∑

y1,...,ym
y1≥2

(n− 2)!

(y1 − 2)!y2! · · · yn!
py1−2
1 py22 · · · pymm = n(n− 1)p21.

Hence

VarY1 = E[Y 2
1 ]−E[Y1]

2 = E[Y1(Y1−1)]+E[Y1]−E[Y1]
2 = n(n−1)p21+np1−(np1)

2 = np1(1−p1).

Using the same trick as above for the covariance, we obtain E[YjYk] = n(n−1)pjpk, and thus

cov(Yj, Yk) = E[YjYk]− E[Yj]E[Yk] = n(n− 1)pjpk − (npj)(npk) = −npjpk.
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(c) Again, let j = 1 without loss of generality. Marginalising, we have

π(p1) ∝
∫

pa1−1
1 · · · pam−1−1

m−1 (1− p1 − · · · − pm−1)
am−1 dp2 · · · dpm−1

=

∫
pa1−1
1 · · · pam−2−1

m−2

{∫ 1−p1−···−pm−2

0

p
am−1−1
m−1 (1− p1 − · · · − pm−1)

am−1 dpm−1

}
dp2 · · · dpm−2.

We do the inner integral first, working our way outwards. The trick is to make the substitu-

tion

pm−1 = (1− p1 − · · · − pm−2)u,

so that the limits of integration turn into 0 and 1. The inner integral is, as a function of p1.∫ 1

0

(1−p1−· · ·−pm−2)
am−1−1uam−1−1(1−u)am−1(1−p1−· · ·−pm−2)

am−1(1−p1−· · ·−pm−2) du

∝ (1− p1 − · · · − pm−2)
am−1+am−1.

Repeating this argument for pm−2, pm−3, . . . , p2, we end up with

π(p1) ∝ pa1−1
1 (1− p1)

a2+···+am−1 = pa1−1
1 (1− p1)

a−a1−1,

which, by functional form, forces p1 ∼ Beta(a1, a− a1).

(d) The mean and variance follow directly from the formulae for the mean and variance of the

Beta distribution. For the covariance, we let j = 1 and k = 2 without loss of generality.

Write a = a1 + · · ·+ am. Then, normalising, we have

E[p1p2] =
Γ(a)

Γ(a1) · · ·Γ(am)

∫
pa11 pa22 pa3−1

3 · · · pam−1−1
m−1 (1− p1 − · · · − pm−1)

am−1 dp1 · · · dpm−1

=
Γ(a)

Γ(a1)Γ(a1)

Γ(a1 + 1)Γ(a2 + 1)

Γ(a+ 2)

∫
{normalised density} dp1 · · · dpm−1

=
a1a2

a(a+ 1)
.

Hence

cov(p1, p2) = E[p1p2]− E[p1]E[p2] =
a1a2

a(a+ 1)
− a1a2

a2
= a1a2

a2 − a(a+ 1)

a(a+ 1)

= − 1

a+ 1

a1
a

a2
a

= − 1

a+ 1
p0,1p0,2.

For the flat Dirichlet, we plug in a1 = · · · = am = 1 in the formulae derived and obtain

E pj =
1

m
, Var pj =

1

2

1

m

(
1− 1

m

)
, cov(pj, pk) = −1

2

1

m2
for j ̸= k.

(e) Using the normalisation trick, we have

π(p1, . . . , pm | y) ∝ π(y | p1, . . . , pm)π(p1, . . . , pm) ∝ py11 · · · pymm × pa1−1
1 · · · pam−1

m

= pa1+y1−1
1 · · · pam+ym−1

m ,
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so by functional form, (p1, . . . , pm) | y ∼ Dir(a1 + y1, . . . , am + ym).

Using the formulae for mean, variance and covariance for the Dirichlet distribution (derived

earlier), we have

E[pj | y] =
aj + yj
a+ n

, Var[pj | y] =
1

aj + yj + 1

aj + yj
a+ n

(
1− aj + yj

a+ n

)
,

cov(pj, pk | y) = − 1

a+ n+ 1

(aj + yj)(ak + yk)

(a+ n)2
for j ̸= k.

Recalling that the Bayes estimator when using the quadratic loss is the posterior mean, we

see that p̂j = (aj + yj)/(a+ n) is a natural Bayes estimator for pj.

The posterior standard deviation is given by

sd(pj | y) =
{

1

aj + yj + 1
p̂j(1− p̂j)

}1/2

.

(f) Write z1:m−1 = (z1, . . . , zm−1). By the transformation law, we have

π(z1, . . . , zm−1, s) = π(x1(z1:m−1, s), . . . , xm(z1:m−1, s))

∣∣∣∣ ∂(x1, . . . , xm)

∂(z1, . . . , zm−1, s)

∣∣∣∣
= πx1:m(sz1, . . . , szm−1, s(1− z1 − · · · − zm−1))

∣∣∣∣ ∂(x1, . . . , xm)

∂(z1, . . . , zm−1, s)

∣∣∣∣
Now, the Jacobian is

∣∣∣∣ ∂(x1, . . . , xm)

∂(z1, . . . , zm−1, s)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

s 0 · · · 0 −s

0 s · · · 0 −s
...

...
. . .

...
...

0 0 · · · s −s

z1 z2 · · · zm−1 1− z1 − · · · − zm−1

∣∣∣∣∣∣∣∣∣∣∣
.

Now, let Dj be the determinant of the (m − j + 1 : m) × (m − j + 1 : m) submatrix of the

above. That is, Dm is the full determinant, D1 = 1 − z1 − · · · − zm−1, and so on. Then we

have the recurrence relation

Dm = sDm−1 + (−1)m+1(−s)z1 × (−1)msm−2 = sDm−1 + sm−1z1

= s{sDm−2 + sm−2z2}+ sm−1z1

= · · ·
= sm−1D1 + sm−1(z1 + · · ·+ zm−1)

= sm−1(1− z1 − · · · − zm−1) + sm−1(z1 + · · ·+ zm−1)

= sm−1.

Hence we obtain

π(z1, . . . , zm−1, s) ∝ (sz1)
a1−1 exp{−sz1} · · · (szm−1)

am−1−1 exp{−szm−1}
× (s(1− z1 − · · · − zm−1))

am−1 exp(−s(1− z1 − · · · − zm−1))× sm−1

= sa−1 exp(−s)× za1−1
1 · · · zam−1−1

m−1 (1− z1 − · · · − zm−1)
am−1,
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where a = a1 + · · · + am. Hence, by functional form, and since the domains of S and

(Z1, . . . , Zm−1) are independent, we see that S and (Z1, . . . Zm−1) are independent, and that

S ∼ Gamma(a, 1), (Z1, . . . , Zm−1) ∼ Dir(a1, . . . , am).

(g) It suffices to show that if (p1, . . . , pm−1) ∼ Dir(a1, . . . , am), then (p1, . . . , pm−2 + pm−1) ∼
Dir(a1, . . . , am−1 + am). Indeed, then the rest follows by reordering the variables if necessary

and applying mathematical induction.

Now, write p = (p1, . . . , pm−1) and let q = (q1, . . . , qm−1), where

q1 = p1,

...

qm−3 = pm−3,

qm−2 = pm−2 + pm−1,

qm−1 = pm−1.

We want to show that (q1, . . . , qm−2) is Dir(a1, . . . , am−3, am−2 + am−1). Now,

π(q) = π(p(q)) ∝ qa1−1
1 · · · qam−3−1

m−3 (qm−2 − qm−1)
am−2−1q

am−1−1
m−1 (1− q1 − · · · − qm−2)

am−1,

and so marginalising out qm−1, we have

π(q1, . . . qm−2) ∝ qa1−1
1 · · · qam−3−1

m−3 (1−q1−· · ·−qm−2)
am−1

∫ qm−2

0

(qm−2−qm−1)
am−2−1q

am−1−1
m−1 dqm−1.

Therefore, we are done if we can show that∫ qm−2

0

(qm−2 − qm−1)
am−2−1q

am−1−1
m−1 dqm−1 ∝ q

am−2+am−1−1
m−2 .

Write r = qm−2, s = qm−1, α = am−2, β = am−1 to simplify notation. We need to show that∫ r

0

(r − s)α−1sβ−1 dr ∝ rα+β−1.

Using the substitution s = ur (again, to shift the integration limits to 0 and 1), we obtain∫ 1

0

(r − ur)α−1uβ−1rβ−1r du = rα+β−1

∫ 1

0

(1− u)α−1uβ−1 du ∝ rα+β−1,

and we are done.
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