
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK4021/9021 –– Applied Bayesian Analysis

Day of examination: Thursday, 30 November 2023

Examination hours: 15.00 – 19.00

This problem set consists of 5 pages.

Appendices: None

Permitted aids: Approved calculator, and one sheet of
paper with the candidate’s own personal notes.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

Answer whether each of the claims listed below is true or false, and give a brief justification
of your answer.

(a) To find the Laplace approximation (lazy Bayes) of a posterior distribution, we do
not need to compute the marginal likelihood.

(b) For any exchangeable sequence y1, . . . , yn of binary observations, there exists a
random variable θ and a prior π(θ) such that the observations are conditionally
independent and identically distributed, given θ.

(c) The Metropolis-Hastings algorithm provides a technique of estimating the marginal
likelihood of a model.

Problem 2

We say that a random variable y follows the half-normal distribution with parameter θ > 0,
written y ∼ HN(θ), if its density is

f(y, θ) =

√
2

π
θ exp

(
−1

2
θ2y2

)
, for y > 0.

(a) Verify that f(y, θ) is indeed a valid probability density.

Hint: You may use the fact that
∫∞
0 exp(−x2) dx =

√
π/2.

(Continued on page 2.)
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(b) Assume now that y1, . . . , yn are independently sampled from the HN(θ) distribution.
Write down the log-likelihood function ℓ(θ), and find the maximum likelihood estima-
tor θ̂, expressed in terms of wn = n−1

∑n
i=1 y

2
i . Also exhibit a normal approximation

for the distribution of θ̂.

Hint: You may use that

E[y] =
1

θ

√
2

π

Var(y) =
1

θ2

(
1− 2

π

)
.

(c) Find the Jeffreys prior. Is this proper or improper?

(d) We will now introduce a conjugate prior for θ. Suppose that θ follows the Nakagami
distribution in the prior, which has density

g(θ) =
2

Γ(α)

(
α

β

)α

θ2α−1 exp

{
−α

β
θ2
}
, for θ > 0,

where α, β > 0 are parameters. Here,

Γ(α) =

∫ ∞

0
tα−1e−t dt

is the Gamma function. Show that the posterior distribution for θ | y1, . . . , yn is also
a Nakagami distribution, and find the posterior parameters αn, βn.

(e) Find the Laplace approximation (lazy Bayes) of the posterior distribution of θ given
y1, . . . , yn. Explain briefly how you would use this to construct a 95% credibility
interval for θ.

(f) Show that the Bayes estimate of θ under squared error loss equals

θB =
Γ(αn + 1/2)

Γ(αn)

√
βn
αn

.

(g) Suppose that x ∼ N(0, 1/θ2) is normally distributed with mean 0 and variance 1/θ2.
That is, it has the density

h(x, θ) =
θ√
2π

exp

{
−θ2

2
x2

}
.

Show that if y = |x| then y ∼ HN(θ). Use this result to explain how you would
sample from the half-normal distribution.

(Continued on page 3.)
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(h) We say that a random variable y is distributed according to the Student’s t-
distribution with parameters µ, λ, ν > 0 if it emits the density

St(y;µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(y − µ)2

ν

]−ν/2−1/2

, for y ∈ R,

where µ ∈ R and λ, ν > 0. For the Naka(α, β) prior, let f̄(y) denote the predictive
distribution of the next data point yn+1 given the observed data y1, . . . , yn. Show
that

f̄(y) = 2 St(y; 0, λ, ν),

for y > 0, where you need to identify the parameters λ, ν. Where is the extra factor
of 2 coming from?

(i) Assume that we are able to sample from the normal, the Nagakami and the
Student’s t-distributions. Give two separate recipes for sampling from the predictive
distribution of the next data point yn+1 given the data y1, . . . , yn.

Problem 3

Suppose we have observed a sequence of pairs of data points (x1, y1), . . . , (xn, yn), where
xi ∈ Rd and yi ∈ R for i = 1, . . . , n. We map each input xi to a vector of p features,

ϕ(xi) = (ϕ0(xi), ϕ1(xi), . . . , ϕp−1(xi))
⊤,

where by convention ϕ0(x) = 1. The vector of outcomes y = (y1, . . . , yn)
⊤ is modelled

using linear regression on the the features,

π(y |w, β) = N(y; Φw, β−1In), (1)

where w = (w0, w1, . . . , wp−1)
⊤ is the vector of coefficients, β > 0 is the precision (inverse

variance) of the model, In is the n× n identity matrix and

Φ =


ϕ0(x1) ϕ1(x1) · · · ϕp−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕp−1(x2)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) · · · ϕp−1(xn)


is the n× p design matrix. Here,

N(x;µ,Σ) = (2π)−n/2|Σ|−1/2 exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
is the density of the n-dimensional Gaussian distribution with mean µ ∈ Rn and (sym-
metric and positive definite) covariance matrix Σ ∈ Rn×n, defined for x ∈ Rn.

(Continued on page 4.)
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Recall the density of a Gamma distribution, given by

Gamma(x; a, b) =
ba

Γ(a)
xa−1 exp{−bx}, for x > 0,

where a, b > 0 are parameters.

In the regression model (1), use the following joint conjugate prior for w and β,

π(w, β) = N(w;m, β−1S)Gamma(β; a, b),

where m ∈ Rp is a prespecified vector and S ∈ Rp×p is a prespecified symmetric positive
definite matrix.

(a) Show that the log prior density can be written as

log π(w, β) = −β

2
(w −m)⊤S−1(w −m) +

(
a+

p

2
− 1

)
log β − bβ + constant,

where the constant does not depend on w or β.

Hint: Recall that if A is an n × n matrix and λ > 0 is a positive scalar, then
|λA| = λn|A|.

(b) Verify that

1

2
(w −m)⊤S−1(w −m) +

1

2
(y − Φw)⊤(y − Φw)

=
1

2
(w − Snz)

⊤ S−1
n (w − Snz)−

1

2
z⊤Snz+

1

2
m⊤S−1m+

1

2
y⊤y,

where

S−1
n = S−1 +Φ⊤Φ,

z = S−1m+Φ⊤y.

(c) Show that the posterior distribution π(w, β |y) takes the same functional form as
the prior,

π(w, β |y) = N(w;mn, β
−1Sn)Gamma(β; an, bn),

and specify the remaining posterior parameters mn, an and bn.

(d) Now suppose we are given a new input x′ ∈ Rd. It can be shown that∫
Rp

exp

{
−β

2
(w −mn)

⊤S−1
n (w −mn)−

β

2
(y′ − ϕ(x′)⊤w)2

}
dw

= β−p/2|T |−1(2π)p/2 exp

{
−β

2
m⊤

nS
−1
n mn − β

2
(y′)2 +

β

2
v⊤Tv

}
,

(Continued on page 5.)
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where

v = S−1
n mn + y′ϕ(x′),

T−1 = S−1
n + ϕ(x′)ϕ(x′)⊤.

Use this result to show that the predictive distribution of the corresponding outcome
y′ is a Student’s t-distribution (see problem 2), and identify its parameter ν (you do
not have to identity the other parameters µ and λ.)

(e) Show that the marginal likelihood π(y) can be written as

π(y) =
1

(2π)n/2
ba

bann

Γ(an)

Γ(a)

|Sn|1/2

|S|1/2
.

Problem 4

Suppose we want to sample from a target distribution on the positive reals R>0, with
density π(x), which we are only able to evaluate up to a constant. We therefore use
the Metropolis-Hastings algorithm. Since the density vanishes for all negative inputs, we
do not want to waste time on negative proposed values. Therefore, we use a log-scale
proposal. More precisely, if the chain is in position x, we first sample ε ∼ N(0, σ2), for
some prespecified σ > 0. We then let the proposed value be

x′ = exp{log x+ ε},

which is guaranteed to be positive.

(a) Use transformation of variables to find an expression for the proposal density q(x′ |x)
of x′ given x.

(b) Use the expression obtained in (a) to show that the acceptance probability for the
algorithm can be written as

α(x′ |x) = min

{
1,

π(x′)x′

π(x)x

}
.

(c) Suppose we run the chain to obtain a sample X1, . . . , XS for some large number S.
Explain briefly how you would assess the quality of the output of the chain.

(d) How would you use the output X1, . . . , XS to estimate the variance associated to the
distribution π?

THE END - GOOD LUCK!


