STK4021 - Applied Bayesian Analysis

Exam 2023 Sample Solutions

Problem 1

(a) True, we only need the posterior mode
Ovap = argmax {logm(0) + logm(y | 0)}
0

and the Hessian )

A=—55

{logm(0) +logm(y | 0)}

0=0nap

(b) False, de Finetti’s theorem requires an infinite exchangeable sequence. A counterexample
with n = 2 was given in lectures.

(c) False, the Metropolis-Hastings algorithm allows us to sample approximately from the pos-
terior distribution, but does not yield an estimate of the marginal likelihood on its own.

Problem 2

(a) Clearly f(y,6) >0 for all y > 0,6 > 0. Also, making the substitution u = 6y /v/2, we have

/O fy,0)dy = \/;9/0 exp{—§92y2} dy = ﬁ/o exp(—u®) du = =Xy = 1.

(b) Likelihood:
_17./2 Lol (2 " Lo
L,(0) = H\/;Gexp{ 20 yi} = (7?) 0™ exp 20 nwy, ¢ .

1
0,(0) = L log2 — n log 7 + nlogf — =6*nw,.
2 2 2
Setting the derivative of this equal to zero, the MLE f satisfies

2 —énwn =0.
0

That is, 6 = 1/./wn.



For the normal approximation, we use that

under the true model, where in this case

0? 1] 1 , 2
Z(6)=—-E [wlogf(y,e)] =E [ﬁ%—Y} —§+VarY—(IEY) =5

Hence our normal approximation is given by
N 02
0 ~N (9, —) :
2n

73(0) oc /1/6% = 1/0),

which is improper as [~ df/6 diverges.

The Jeffreys prior 7; satisfies

We have

T R e R o)

so by functional form, 6 | yy,...,y, ~ Naka(a,, 5,), where

oy, a 1

200, — 1 =20 +n—1 and — = — + —nw,.
Bn B 2
That is,
20+ n
ap, =a+n/2 and f 20/F + nw,
Let

h(0) =logm(0 | Y1, ..., Yn) = (204, — 1) log 6 — %62 + constant.

n

The maximiser Oyap satisfies b/ (Oyap) = 0, so

200, — 1 a
L —2-24 =0.
Oniap Bn MAP

thiap = \/@1 <1 — 2(]);71).

Or, in terms of the prior parameters,

0 B 2a4+n 2a4+n-1  [2a+n-—1
MAP A 2a/B + nw, 20+n \ 20/B8+ nw,

1—-2aq, Qp

62 By

That is,

Also,

h//(e) —



SO

200, — 1 o 2x 200, — 1 4o
A=—h"(0 =" — 42 t_=_"" i 1y =2,
(Oniap) + {2an T + } 3.

B, (1 - 2%> B Bn

Or, in terms of the prior parameters,

4o
A= — +2nw,.
B

1 B
‘9|?/1,---7yn%N<\/ﬁn (l_ﬂ)E)
[ 2004+ n—1 4o -1
0 TR\ — < — + 2nw,
‘yla Y ( 20z/ﬁ+nwn {5 =+ 2nw } )

as the Laplace approximation.

Letting z = ®1(0.975) ~ 1.96, we get the credibility interval [QMAP +1./B, /anz} .

This yields

or

(f) It suffices to show that if § ~ Naga(a, 3), then

~ T(a+1/2) |8

Now, using the substitution ¢t = a#*/3, we have

_ 2 (N [ e [ 22
*= ) (6) I exp{ ﬂe}de
a 0o a+1/2
“wa(5) [ (5) e
F(la \/7/ (a+1/2)~1~t gy
_F(a+1/2\/’
T I() a’

as required.

(g) We have

as required.

To sample from the half-normal distribution, we

3



1. sample X ~ N(0,1/6?),
2. set Y «+ | X|.

Then Y ~ HN(6).

The predictive is given by
/fyu 0|y1’7yn)

:\E (&) [Toment-(5e3) e}

We recognise this integrand as an unnormalised Nakagami distribution, say Naka(#;a/, 5),
whose parameters satisfy

o 1
20’ —1=2a, and L ey Y-
B Bn
That is,
—1/2
o =a,+1/2 and 6’:%—.
/ ol B+ U2

Hence we get

2 Qn F( 1/2) . 1 ) —an—1/2
mT(a ( ) 2 (E oY >
_ I( an 1/2 —an—1/2 - —an—1/2
“Vr Dl ( n) ( n) { ]

I(ay, + 1/2)< By )1/2{ ~an— 1/2

NG T X 20, 2any
= 2856(y; 0, B, 2as).

||
mﬁ

I
N

The factor 2 comes from the fact that this is a half-Student’s t-distribution, in much the
same way as the half-normal distribution.

Method 1:

1. sample 6 ~ Naga(a,, 8,),
2. sample Y | § ~ HN() (using the method given in part (g)).

Method 2:

1. sample Z ~ St(0, 8, 2a,),
2. set Y « |Z|.



Problem 3

(a) Noting that
log |B_1S|_1/2 = log (5p/2|5|_1/2) = glogﬁ + constant,

log m(w, 8) = ‘glogﬁ - g(w —m)' S (w —m) + (a — 1) log B — bf + constant

_ _g(w_m)Ts—l<w_m) + <a+§_ 1) lggﬁ— bﬂ—i—constant,

as required.

(b) We have
RHS = é(w—Snz) S, (w— S,2z) — 5 Snz+§m S m—{—§y y

1 1 1

= —w'S'w—z'w+-m'ST'm+-y'y
2 2 2
1 1 1 1

= EWTS’lw + §WT<I>TQJW —m' S 'w—y dw + §mTS*1m 4+ EyTy
1 1

= §(W —m)'S™(w—m)+ é(y — dw) ' (y — dw)

= LHS.

(c¢) By the previous parts we have
logm(w, B |y) =logn(y | w, )+ logn(w, ) + constant
= log i~y — @) Ty~ @w) ~ - (w ) TS (w - m)
+ (a + g — 1) log 8 — bB + constant
= —g(w — S,2)" S Y (w — Spz) + g {z'Sz—m'S"'m—y'y}
+ <a + ]% — 1) log 3 + bB + constant

+n

= _§(W — Snz)TS;I(W — S,z) + <a + pT - 1> log 8

1 1 1
—-p {b —-2'S,z+ -m' S 'm + —yTy} ;

2 2 2
so that " 1 ] ]
_ _ n T 1o To-1 1T
m, = S,z, an—a+2, b, =b 2z Snz—|—2mS m—|—2y y.
(d) Let
= _é _ To-1 _ N é r NT \2
T(9) = [ exp{—S(w —m,)7S; (w —my) = 2 — ¢(a') )t dw

= BT (21)P/2 exp {—ngSnlmn - g(y’)2 + §VTTV} :



Then
7/ 1¥) = [ | w.5)m(w. 3| ¥) dwdd
al/ﬁ%+w%”9@m{—ﬁm}1@ﬂdﬁ
x /ﬁan_l/Q exp {—ﬂ (bn + %mISglmn + %(ylf — %VTTV) } dgs.

We recognise this integrand as an unnormalised Gamma(d’, b') density, with

1 1 1
d=a,+1/2, b =0b,+ §mISglmn + §(y’)2 - §VTTV.
Hence, integrating, we get
/ L Lo 1+ el

(. s

~
quadratic in y’

which by functional form is a Student’s t-distribution with v = 2a,,.

For the sake of completeness, we also find the two other parameters. Let ¢p = ¢p(a’) for ease
of notation. By the Sherman-Morrison formula we have

Sud' Sy

T—g _ 2nP¥ Pn
T 675

so that the quadratic ¢(y') in (1) can be written as

o) = W) |5 - 597T8| - ) [T +

where
L PO LN PO P
c:bn+§mn5n mn—ﬁmnSn TS, m,
byt T tm, — imTsot g, - @9 S | oo
_bn—i—zmnSn m,, 2mnSn Sh 1 075,60 S, ‘m,
T 52
21+ ¢S
Also,
T T5¢ ¢Ts¢ mT¢
T —lT — T _mn¢¢ n _ T 1 — n — n
WS TG =Mt T e T T T e5,.6) 11 675.0
and
11 11 1(¢7S,0)2 1 1 ¢'S,¢ 1 1
L lere-t lorsge 0O 1 1 050 ] ,
2 2 2 2 21+¢'S, 0 2 214+¢'S,p 21+¢7S,¢

6



so that

N o 1 1 /N2 m;7,|—¢ / 1 (m;r¢)2
‘I(y)_éuwans(y) _1+¢Tsn¢(y)+§1+wsn¢+b"
_1 1 I T 2
w4980 (y—m )
x 1+

9

2a,,
which forces

p=mig, A= "[1+0"S.¢] .

(e) By definition,
w(w, Hrly | w.5)

m(y) =
) m(w,B|y)
Since the prior is conjugate, we only have to work out the ratio of normalisation constants.
Hence
¥) |S|=Y2(27)P/2b2 /T (a) x (27) /2 1 b T(ay)|S,|"?
e - = _ .
Y | S| H/2(2m) =P/ 2bgn /T (an) (2m)"/2 bir T'(a) |S]'2
Problem 4
(a) We have
2’ = exp {log + £},
e =logx’ —loguz,
so that 5 ) . )
5 2
(0’ 0) = e | 55| = g exp { 50 Hlog’ — oga* | 2,

(b) Noting that the exponent from (a) is symmetric in = and 2/, we get

a(a’ | z) = min {1, M} ~ min {1’ m(a') 1)z } - {1’ W(x’)x’} |

m(x)q(z' | x) m(z) 1/
as required.
(c¢) For example:
e Check that multiple runs from different starting points yield the same results, to the
required accuracy.
e Draw trace-plots to inspect the effect of burn-in and autocorrelation.
e Plot autocorrelation against lag. Make sure it drops off quickly.

e Compute the effective sample size (ESS). Check that this is sufficiently large (> 1000,
say).



e Calculate the acceptance rate. Make sure this close to the optimal value (about 24%).

(d) Writing

1 S
,EL = E Xs7
s=1

Wl

then we can use



