
10th October, 2023

STK4021/9021 –– Applied Bayesian
Analysis

Mandatory assignment
Submission deadline

Thursday 26th October 2023, 14:30 in Canvas (canvas.uio.no).

Instructions

Note that you have one attempt to pass the assignment. This means that there
are no second attempts.

All students should attempt Problems 1–3. Only students taking STK9021 should
attempt Problem 4.

You can choose between scanning handwritten notes or typing the solution directly
on a computer (for instance with LATEX). The assignment must be submitted as a
single PDF file. Scanned pages must be clearly legible. The submission must contain
your name, course and assignment number.

It is expected that you give a clear presentation with all necessary explanations.
Remember to include all relevant plots and figures. All aids, including collaboration,
are allowed, but the submission must be written by you and reflect your understanding
of the subject. If we doubt that you have understood the content you have handed
in, we may request that you give an oral account.

In exercises where you are asked to write a computer program, you need to hand in
the code along with the rest of the assignment. It is important that the submitted
program contains a trial run, so that it is easy to see the result of the code.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to illness or
other reasons, you have to contact the Student Administration at the Department of
Mathematics (e-mail: studieinfo@math.uio.no) no later than the same day as the
deadline.

All mandatory assignments in this course must be approved in the same semester,
before you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

GOOD LUCK!
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Problem 1. This problem starts with two general questions about Bayesian inference,
followed by a more specific problem.

(a) Is it true that if two model parameters are independent in the prior, then they
are also independent in the posterior? Give a proof or a counterexample.

(b) Suppose we sample θ ∼ π(·) from the prior, y ∼ π(· | θ) from the forward model
and then θ′ ∼ π(· | y) from the posterior, given y. What is the distribution of
θ′?

We now turn to a more specific problem. Consider the square root distribution for
independent nonnegative observations y1, . . . , yn, with density

f(y, θ) = θ

2√
y

e−θ
√

y for y > 0, (1)

where θ > 0 is an unknown parameter.

(c) Show that f(y, θ) indeed defines a probability density function. Show that its
mean is 2/θ2, and find also its median.

(d) Suppose there are independent observations y1, . . . , yn from the density above.
Write down an expression for the log-likelihood function and find a formula
for the maximum likelihood estimator θ̂. Also find expressions for the exact
and/or approximate distribution for this estimator.

(e) Assume next that a Gamma prior distribution is elicited for θ, with some
parameters (a, b), i.e. of the form {ba/Γ(a)}θa−1 exp(−bθ) for θ positive. Find
the posterior distribution for θ given the observations y1, . . . , yn.

(f) To learn more about the consequences of having a Gamma type prior with the
square root distribution, find a formula for the marginal density of y, when
y | θ has the density (1) and θ ∼ Gamma(a, b). Find in particular such a
formula for both the density and the cumulative distribution function of y in
the case of (a, b) = (1, 1).

(g) Assume now that θ has a Gamma prior with carefully set parameters (4.4, 2.2)
and that twelve costly data points have been observed from the model:

0.771, 0.140, 0.135, 0.007, 0.088, 0.008,

0.268, 0.022, 0.131, 0.142, 0.421, 0.125

Display the prior and the posterior densities in a diagram. Compute also the
probabilities p1, p2, p3, that θ is in (0, 1.50), or (1.50, 3.00), or (3.00, ∞), for the
prior and then for the posterior.

(h) Give a formula for the predictive density for y13, and find the 0.10, 0.50, 0.90
quantiles of this distribution (perhaps by simulation).
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(i) A certain institution needs to take a decision, in January 2024, related to the
size of the parameter θ. The three possible decisions are A, business as usual;
B, investing a certain high sum in some repair; C, investing a substantially
higher sum in a more costly operation. The loss function, associated with
future costs, in annual million kroner, is

L(θ, A) =
0 if θ ≤ 1.50,

1 if θ > 1.50,

L(θ, B) =
0 if θ ∈ (1.50, 3.00),

2 if θ /∈ (1.50, 3.00),

L(θ, C) =
0 if θ > 3.00,

3 if θ ≤ 3.00.

Which decision looked best before the twelve data points were collected? Which
decision is best after having collected the data?

Problem 2. Let y = (y1, . . . , yn) be observed data and suppose we have k competing
models m1, . . . , mk. For j = 1, . . . , k, the parameters of model mj are θj, living in
the parameter space Θj. Furthermore, write πj(θj) and πj(y | θj) for the mj prior
density and likelihood, respectively. Finally, let Pj be the prior probability assigned
to model mj. The full parameter space is

Ω =
k⋃

j=1

⋃
θ∈Θj

{(θ, mj)}.

(a) Show that the marginal likelihood for the full model takes the form

π(y) = P1π1(y) + · · · + Pkπk(y),

where
πj(y) =

∫
Θj

πj(y | θj)πj(θj) dθj

is the model mj marginal likelihood.

(b) Show also that the posterior probabilities assigned to the models can be written
as

P ⋆
j = π(mj | y) = Pjπj(y)

P1π1(y) + · · · + Pkπk(y) = Pjπj(y)
π(y) ,

for j = 1, . . . , k.

Is there a decline in the number of skiing days per year in Nordmarka? Download the
bjornholt.csv data set, available on the course webpage. These data contain the
number of days per year at which there were more than 25 cm of snow at Bjørnholt,
Nordmarka. The measurements started in 1897 and have continued until 2022, apart
from a gap between 1938 and 1954, so the total number of measurements is n = 109.
We let x = (x1, . . . , xn)⊤ denote the years and y = (y1, . . . , yn)⊤ denote the number
of skiing days, respectively. The data are displayed in Figure 1.
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Figure 1: The wondrously falling snow flakes [you may sing Schubert’s Der Leiermann
here, or simply listen to the recording by Ian Bostridge and Leif Ove Andsnes]
represent skiing days per winter season at Bjørnholt, from 1897 to 2022, but with no
data for the seasons 1938 to 1954.

(c) First consider linear regression,

yi = w0 + w1(xi − 1900) + εi,

where ε1, . . . , εn ∼ N(0, β−1), independently. We can think of this as
polynomial regression with p = 2 and feature maps

ϕj(x) = (x − 1900)j,

for j = 0, 1, . . . , p − 1. Writing w = (w0, w1)⊤, use

π(w) = N(w; 0, α−1I)

as prior, and recall that the likelihood takes the form

π(y | w) = N(y; Φw, β−1I),

where

Φ =


ϕ0(x1) ϕ1(x1) · · · ϕp−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕp−1(x2)

... ... . . . ...
ϕ0(xn) ϕ1(xn) · · · ϕp−1(xn)
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is the design matrix.
Use empirical Bayes to find optimal values of the hyperparameters α, β. What
is the resulting value of the log marginal likelihood log π(y)?

(d) Find the posterior distribution for w = (w0, w1)⊤. Let x′ = 2023, the current
year, and let y′ be the number of skiing days. Find the predictive distribution
π(y′ | y), and give a 95% credibility interval for y′. In a diagram, plot the
predictive mean for all years between 1897 and 2023, along with bands spanning
± one predictive standard deviation.

(e) As an alternative hypothesis to a declining trend, there might just be a constant
trend, so p = 1 and w = (w0). Repeat the analysis from (c) and (d) using the
constant model, including the plot of the predictive distribution.

(f) Now we will compare the two models. Let m = 0 and m = 1 denote the
constant and linear models, respectively. Use P0 = P1 = 1/2 as prior model
probabilities.
Write down the full parameter space Ω.
What is the full log marginal likelihood? What are the posterior model
probabilities? Which model should we choose? Hint: To evaluate the full log
marginal likelihood, use the LogSumExp trick.

(g) Discuss briefly strengths and weaknesses with the analysis you have performed
in this exercise.

Let us return to regression with a fixed value of p (the first level of inference, in the
terminology of MacKay (1992)).

(h) Consider the predictive distribution π(y′ | y) of the output y′ of a new input
x′. Recall that this distribution has variance

σ2
n(x′) = 1

β
+ ϕ(x′)Snϕ(x′),

where
S−1

n = αI + Φ⊤Φ
is the posterior precision matrix. Use the Sherman-Morrison formula for a
nonsingular p × p matrix M and p-dimensional vectors u and v,

(M + uv⊤)−1 = M−1 − M−1uv⊤M−1

1 + v⊤M−1u
,

to show that
σ2

n+1(x′) ≤ σ2
n(x′).

What does this result tell us?
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Problem 3. Let α > 0 be a fixed constant, and consider a sequence X1, X2, . . . of
random variables generated as follows. For the first variable, we have that X1 ∼ P ,
where P is some fixed continuous probability distribution. Suppose now that we
have generated X1 = x1, . . . , Xn = xn. Then Xn+1 is generated by

Xn+1 | {X1 = x1, . . . , Xn = xn} ∼ α

α + n
P + 1

α + n

n∑
i=1

δxi
, (2)

where δx is the degenerate distribution at the point x. That is, with probability
α/(α + n), Xn+1 ∼ P , and with probability n/(α + n), Xn+1 ∼ Uniform{x1, . . . , xn}.

(a) What is the probability that X1 = X2? What is the probability that
X1 = X2 = · · · = Xn?

(b) Use the results from (a) to show that the Xi are not independent.

(c) For the values α ∈ {1, 10, 100} generate a sample of size n = 1000, using
P = Beta(1, 2). Count the number of unique values in each sample. How is
the value of α related to this number?

(d) Show that the number Kn of unique values in the sample X1, . . . , Xn can be
written as

Kn =
n∑

i=1
Bi,

where Bi ∼ Bernoulli(α/(α + i − 1)), independently, for i = 1, . . . , n.

(e) In addition to counting the number of unique values Kn in the sample
X1, . . . , Xn, we are also interested in the clustering of the sample. For example,
for n = 8, we could have that

X1 = X3 = X8, X2 = X5, X4 = X6 = X7,

with three distinct values in each cluster (so X1 ̸= X2 etc.) We write this event
as

C = {{1, 3, 8}, {2, 7}, {4, 5, 6}}.

Find P(C), the probability of observing C as the clustering of X1, . . . , X8.

(f) Now let
D = {{1, 2, 5}, {3, 7, 8}, {4, 6}}.

Show that P(C) = P(D).

(g) Deduce that the sequence X1, X2, . . . is exchangeable.

(h) With P = Beta(1, 2) again, what is the probability that X2023 ∈ [1/3, 2/3]?

(i) Show that for any (measurable) sets A and B, we have

P(X1 ∈ A, X2 ∈ B) = α

α + 1P (A)P (B) + 1
α + 1P (A ∩ B).
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Problem 4. This problem is for STK9021 students only. Write a short essay
(between three and six pages excluding references) on a part of the syllabus that you
particularly enjoyed, or found particularly interesting. You are highly encouraged to
explain how some of the themes of the syllabus relate to your own research project,
if this is the case. In addition, you are encouraged to reflect on some of the broader
themes of the course, including:

• Frequentist versus Bayesian inference (you may find Gelman (2008) an
interesting read)

• The first and second levels of inference, (MacKay, 1992),

• The two cultures (Breiman, 2001).
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