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This exam set contains four exercises and comprises four pages. The last page also provides

a short Appendix containing a few facts and definitions which you may find useful.

Note: Please write your name on the top of the first page of what you hand in today. In

the marking process we need to connect your solutions of today with your project report.

Exercise 1

We start off considering a simple but prototypical Bayesian setup, involving a normal

model with a normal prior. Suppose y is a single observation from the N(θ, 1) distribution,

with θ being given a N(θ0, σ
2
0) prior.

(a) What is then the marginal distribution of y, and what is the covariance between y

and θ?

(b) Find also the posterior distribution of θ, expressed in terms of the observation y.

Comment specifically but briefly on the two cases where σ0 is respectively small or

big.

(c) On this occasion Mr Savage uses the prior N(−1, 0.7802) for θ, reflecting in particular

his being rather sure that the θ in question is negative, as Pr{θ < 0} = Φ(1.282) = 0.90

(writing as usual Φ(·) for the cumulative standard normal distribution). Write up an

expression for Mr Savage’s belief that θ is negative after having seen the datum y.

How big must this observation y be in order for Mr Savage to change his mind into

then believing that θ is positive with probability 0.90?

Exercise 2

Lord Rayleigh won the Nobel Prize for physics in 1904 (jointly with William Ram-

sey, for having discovered argon). A certain statistical distribution is named after him,

and is used in various branches of statistics, e.g. in connection with analysis of waves,

directions, and amplitudes, and with magnetic resonance images. Say now that y has the

Rayleigh distribution with parameter θ, written y ∼ Rayl(θ), if its density is

f(y, θ) = exp(− 1
2θy

2)θy for y > 0,

where θ is a positive parameter.
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(a) Assume independent data points y1, . . . , yn are observed from the Rayl(θ) distribution.

Find the maximum likelihood estimator θ̂, expressed in terms of wn = n−1
∑n

i=1 y
2
i .

Also exhibit a normal approximation to the distribution of θ̂.

(b) Suppose further that prior knowledge about θ may be adequately translated into

the prior θ ∼ Gam(a, b), for suitable values of (a, b) (see the Appendix here for the

definition of the Gamma distribution). Show that the posterior distribution of θ also

is of the Gamma type, say θ | data ∼ Gam(an, bn), and identify an, bn. What can you

say here regarding this exact posterior distribution in relation to the so-called ‘Lazy

Bayesian’s approximation’?

(c) Give a formula for the Bayes estimate of θ under squared error loss. Explain briefly

how you may construct a 90% credibility interval for θ.

(d) For the Gam(a, b) prior, find the predictive distribution f̄(y), the distribution of ‘the

next data point’ yn+1, given the observed data y1, . . . , yn.

Exercise 3

Here we shall briefly consider a type of ‘statistical pattern recognition’ problem

found in e.g. various types of communication theory.

(a) Suppose there are two competing models for explaining a data point (or vector) y;

under model M1 the density is f1(y), and under M2 it is f2(y). For simplicity we take

these model densities to be known, i.e. without further unknown parameters. If one in

addition has prior probabilities π1 and π2 for these two models (summing to 1, i.e. no

other models are under consideration), explain why

Pr(M1 | y) =
π1

π1 + π2R(y)
, Pr(M2 | y) =

π2R(y)

π1 + π2R(y)
,

where R(y) = f2(y)/f1(y).

(b) Assume a decision needs to be taken after having observed y, either A1, ‘the y stems

from f1’ or A2, ‘the y stems from f2’, and that the loss function is involved is

L(model, decision) =
{
1 if one is wrong,
0 if one is correct.

Derive the Bayes rule for this problem, that is, explain clearly when the Bayes rule

allocates y to M1 and when to M2.

(c) Consider the two simple densities

f1(y) =
1√
2π

exp(− 1
2y

2) and f2(y) =
1√
2
exp(−

√
2|y|).

The first is of course the standard normal and the second is a so-called double expo-

nential, which I have scaled here to have standard deviation 1. The two densities are

hence symmetric with identical means and identical standard deviations and not easy
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to disentangle from each other. With equal prior model probabilities π1 = π2 = 1
2 ,

find out precisely when an observed y is classified as standard normal and when it is

classified as double exponential.

(d) The problem becomes statistically speaking easier with more information about the

underlying source. Assume in fact that you are observing a stream of independent

data y1, y2, y3, . . ., where these are either all stemming from f1 or all from f2, with

equal prior probabilities 1
2 ,

1
2 . Give formulae for

Pr(M1 | y1, . . . , yj) and Pr(M2 | y1, . . . , yj)

for j = 1, 2, 3, . . .. – This is illustrated in the figure below, based on having observed

so far forty data points:

1.982 0.257 0.867 -1.077 -1.294 0.648 0.092 -0.108 -0.672 0.308

2.162 1.049 -0.950 2.443 -0.084 0.032 -1.134 0.011 -0.396 -1.920

1.887 -0.113 0.115 -0.018 1.192 0.148 0.530 0.582 -0.056 -0.418

0.241 0.718 -3.360 -0.110 -0.297 -0.113 -0.398 0.128 0.559 -1.356
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The figure displays Pr(M2 | y1, . . . , yj) (full curve) and Pr(M1 | y1, . . . , yj) (dotted
line) as information about the source accumulates, for j = 1, 2, 3, . . ..

(e) Attempt to prove that the machinery developed above is guaranteed to work correctly

with enough data, in the sense that if the data come from f1, then Pr(M1 | data) → 1,

and correspondingly that if the data come from f2, then Pr(M2 | data) → 1. The

convergence here is for the sample size increasing towards infinity.
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Exercise 4

Consider the ordered measurements

0.255 0.818 0.859 2.504 2.549 2.793 3.039 3.603 3.805 4.294

These are taken to be an ordered i.i.d. sample from a uniform distribution on [0, θ], with

θ an unknown parameter.

(a) Write down the likelihood function for these data, under the assumed uniform model.

What is the maximum likelihood estimate?

(b) With the prior 1/θ for the unknown parameter, give an explicit formula for the poste-

rior distribution, and compute the Bayes estimate under absolute loss (i.e. L(θ, θ̂) =

|θ̂ − θ|).

Appendix: Just a few useful facts

The multinormal distribution: An important property of the multinormal is that a

subset of components, conditional on another subset of components, remains multinormal.

In fact, if

X =

(
X(1)

X(2)

)
∼ Nk1+k2

(

(
ξ(1)

ξ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

)
),

then

X(1) | {X(2) = x(2)} ∼ Nk1
(ξ(1) +Σ12Σ

−1
22 (x

(2) − ξ(2)),Σ11 − Σ12Σ
−1
22 Σ21).

The gamma distribution: We say that X has a Gamma distribution with parameters

(a, b), which we write as X ∼ Gam(a, b), if its density takes the form

f(x) =
ba

Γ(a)
xa−1 exp(−bx) for x > 0.

Its mean and variance are equal to respectively a/b and a/b2.
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