UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK4021 - Applied Bayesian statistics - Home exam
Day of examination:
2013
Examination hours: 15.00-19.00.
This problem set consists of 5 pages.
Appendices: None
Permitted aids: Calculator, plus one single sheet of paper with the candidate's

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

(a) $y \sim N\left(\theta_{0}, \sigma_{0}^{2}+1\right)$
(b) We have

$$
\binom{\theta}{y} \sim N\left(\binom{\theta_{0}}{\theta_{0}},\left(\begin{array}{cc}
\sigma_{0}^{2} & \sigma_{0}^{2} \\
\sigma_{0}^{2} & \sigma_{0}^{2}+1
\end{array}\right)\right)
$$

giving that $\theta \mid y$ is Gaussian with

$$
\begin{aligned}
E[\theta \mid y] & =\theta_{0}+\frac{\sigma_{0}^{2}}{\sigma_{0}^{2}+1}\left(y-\theta_{0}\right) \\
& =\frac{\theta_{0}+\sigma_{0}^{2} y}{\sigma_{0}^{2}+1} \\
\operatorname{Var}[\theta \mid y] & =\sigma_{0}^{2}-\frac{\sigma_{0}^{4}}{\sigma_{0}^{2}+1}=\frac{\sigma_{0}^{2}}{\sigma_{0}^{2}+1}
\end{aligned}
$$

(c) We have

$$
\frac{\theta-\frac{\theta_{0}+\sigma_{0}^{2} y}{\sigma_{0}^{2}+1}}{\frac{\sigma_{0}}{\sqrt{\sigma_{0}^{2}+1}}} \sim N(0,1)
$$

which gives

$$
\operatorname{Pr}(\theta \leq 0)=\operatorname{Pr}\left(Z \leq-\frac{\frac{\theta_{0}+\sigma_{0}^{2} y}{\sigma_{0}^{2}+1}}{\frac{\sigma_{0}}{\sqrt{\sigma_{0}^{2}+1}}}\right)
$$

to make this probability equal to 0.1 , we need

$$
-\frac{\frac{\theta_{0}+\sigma_{0}^{2} y}{\sigma_{0}^{2}+1}}{\frac{\sigma_{0}}{\sqrt{\sigma_{0}^{2}+1}}}=-1.282
$$

or

$$
\frac{\theta_{0}+\sigma_{0}^{2} y}{\sigma_{0}^{2}+1}=1.282 \frac{\sigma_{0}}{\sqrt{\sigma_{0}^{2}+1}}
$$

or

$$
y=\frac{1.282 \sigma_{0} \sqrt{\sigma_{0}^{2}+1}-\theta_{0}}{\sigma_{0}^{2}}=3.728
$$

Problem 2

(a) We have

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n}\left[-\frac{1}{2} \theta y_{i}^{2}+\log (\theta)+\log \left(y_{i}\right)\right] \\
\frac{\partial}{\partial \theta} \ell(\theta) & =\sum_{i=1}^{n}\left[-\frac{1}{2} y_{i}^{2}+\frac{1}{\theta}\right]=-\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}+\frac{n}{\theta} \\
\frac{\partial^{2}}{\partial \theta^{2}} \ell(\theta) & =-\frac{n}{\theta^{2}}
\end{aligned}
$$

so the function is unimodal and we obtain

$$
\hat{\theta}_{M L}=\frac{2 n}{\sum_{i=1}^{n} y_{i}^{2}}=2 w_{n}^{-1}
$$

(b) We have

$$
\begin{aligned}
p(\theta \mid \boldsymbol{y}) & \propto \theta^{a-1} e^{-b \theta} \prod_{i=1}^{n} e^{-0.5 \theta y_{i}^{2}} \theta y_{i} \propto \theta^{a+n-1} e^{\left[b+0.5 \sum_{i=1}^{n} y_{i}^{2}\right] \theta} \\
& \propto \operatorname{Gamma}\left(a_{n}, b_{n}\right)
\end{aligned}
$$

with

$$
a_{n}=a+n \quad, b_{n}=b+0.5 \sum_{i=1}^{n} y_{i}^{2}
$$

(c) Under square root loss, the Bayes rule is the posterior expectation, that is

$$
\hat{\theta}_{B}=\frac{a+n}{b+0.5 \sum_{i=1}^{n} y_{i}^{2}}=\frac{2 a+2 n}{2 b+\sum_{i=1}^{n} y_{i}^{2}}
$$

90% creidibility intervals can be found be taking the 0.05 and 0.95 quantiles in the Gamma distribution about.
(d) We have

$$
\begin{aligned}
p\left(y_{n+1} \mid \boldsymbol{y}\right)= & \int_{\theta} p\left(y_{n+1} \mid \theta\right) p(\theta \mid \boldsymbol{y}) d \theta \\
= & \int_{\theta} e^{-0.5 \theta y_{n+1}^{2}} \theta y_{n+1} \frac{b_{n}^{a_{n}}}{\Gamma\left(a_{n}\right)} \theta^{a_{n}-1} e^{-b_{n} \theta} d \theta \\
= & a_{n} y_{n+1} \frac{b_{n}^{a_{n}}}{\left[b_{n}+0.5 y_{n+1}^{2}\right]^{a_{n}+1}} \times \\
& \int_{\theta} \frac{\left[b_{n}+0.5 y_{n+1}^{2}\right]^{a_{n}+1}}{\Gamma\left(a_{n}+1\right)} \theta^{a_{n}+1-1} e^{-\left[b_{n}+0.5 y_{n+1}^{2}\right] \theta} d \theta \\
= & a_{n} y_{n+1} \frac{b_{n}^{a_{n}}}{\left[b_{n}+0.5 y_{n+1}^{2}\right]^{a_{n}+1}}
\end{aligned}
$$

Problem 3

(a) We have

$$
\begin{aligned}
& \operatorname{Pr}\left(M_{1} \mid y\right) \propto \operatorname{Pr}\left(M_{1}\right) p\left(y \mid M_{1}\right)=\pi_{1} f_{1}(y) \\
& \operatorname{Pr}\left(M_{2} \mid y\right) \propto \operatorname{Pr}\left(M_{2}\right) p\left(y \mid M_{2}\right)=\pi_{2} f_{2}(y)
\end{aligned}
$$

Since these probabilities needs to sum to one, we obtain

$$
\operatorname{Pr}\left(M_{1} \mid y\right)=\frac{\pi_{1} f_{1}(y)}{\pi_{1} f_{1}(y)+\pi_{2} f_{2}(y)}=\frac{\pi_{1}}{\pi_{1}+\pi_{2} f_{2}(y) / f_{1}(y)}
$$

(b) We have

$$
\begin{aligned}
& E[L(M, 2) \mid y]=1 \cdot \operatorname{Pr}(M=1 \mid y)+0 \cdot \operatorname{Pr}(M=2 \mid y)=1-\operatorname{Pr}\left(M_{2} \mid y\right) \\
& E[L(M, 1) \mid y]=1 \cdot \operatorname{Pr}(M=2 \mid y)+0 \cdot \operatorname{Pr}(M=1 \mid y)=1-\operatorname{Pr}\left(M_{1} \mid y\right)
\end{aligned}
$$

We then make decision 1 if $1-\operatorname{Pr}\left(M_{1} \mid y\right)<1-\operatorname{Pr}\left(M_{2} \mid y\right)$ or $\operatorname{Pr}\left(M_{1} \mid y\right)>$ $\operatorname{Pr}\left(M_{2} \mid y\right)$.
(c) We classify to normal if $f_{1}(y)>f_{2}(y)$, that is

$$
\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right)>\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|y|)
$$

or

$$
-\frac{1}{2} y^{2}-\frac{1}{2} \log (\pi)>-\sqrt{2}|y|
$$

or

$$
y^{2}<2 \sqrt{2}|y|-\log (\pi)
$$

(d) Now

$$
\begin{aligned}
& \operatorname{Pr}\left(M_{1} \mid y_{1}, \ldots, y_{n}\right) \propto \pi_{1} \prod_{i=1}^{n} f_{1}\left(y_{i}\right) \\
& \operatorname{Pr}\left(M_{2} \mid y_{1}, \ldots, y_{n}\right) \propto \pi_{2} \prod_{i=1}^{n} f_{2}\left(y_{i}\right)
\end{aligned}
$$

(e) (Tricky!!) We have that

$$
\begin{array}{r}
\frac{\operatorname{Pr}\left(M_{1} \mid \boldsymbol{y}\right)}{\operatorname{Pr}\left(M_{2} \mid \boldsymbol{y}\right)}=\exp \left(n \frac{1}{n} \sum_{i=1}^{n} \log f_{1}\left(y_{i}\right)-n \frac{1}{n} \sum_{i=1}^{n} \log f_{2}\left(y_{i}\right)\right) \\
\approx \exp \left(n\left[E\left[\log f_{1}\left(y_{i}\right)\right]-E\left[\log f_{2}\left(y_{i}\right)\right]\right]\right)
\end{array}
$$

for large n
For $y_{i} \sim f_{1}$, we have

$$
\left.E\left[\log f_{1}\left(y_{i}\right)\right]-E\left[\log f_{2}\left(y_{i}\right)\right]\right]=\int_{y} f_{1}(y) \log \frac{f_{1}(y)}{f_{2}(y)} d y
$$

which is the Kullback-Leibler distance between f_{1} and f_{2}. This distance is always positive, making the fraction above increase exponentially and making $\operatorname{Pr}\left(M_{1} \mid y\right)$ convergence towards 1 .

For $y_{i} \sim f_{2}$, we have

$$
\left.E\left[\log f_{1}\left(y_{i}\right)\right]-E\left[\log f_{2}\left(y_{i}\right)\right]\right]=\int_{y} f_{2}(y) \log \frac{f_{1}(y)}{f_{2}(y)} d y=-\int_{y} f_{2}(y) \log \frac{f_{2}(y)}{f_{1}(y)} d y
$$

which is the minus Kullback-Leibler distance between f_{2} and f_{1}. This distance is again always positive, making the fraction above decrease exponentially and making $\operatorname{Pr}\left(M_{1} \mid y\right)$ convergence towards 0 .

Problem 4

(a) We have

$$
p(y \mid \theta)=\prod_{i=1}^{n} p\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} I\left(0 \leq y_{i} \leq \theta\right)=\theta^{-n} I\left(0 \leq \min \left(y_{i}\right) \leq \max \left(y_{i}\right) \leq \theta\right)
$$

Now since the maximum is larger than 1 and θ^{-n} will decrease with increasing values of $\theta>1$, we find that the maximum likelihood estimate is $\max \left(y_{i}\right)=4.294$.
(b) We now have

$$
p(\theta \mid y) \propto p(\theta) p(y \mid \theta) \propto \theta^{-(n+1)} I(\theta \geq 4.294)
$$

Now

$$
\int_{4.294}^{\infty} \theta^{-11} d \theta=\left[-\frac{1}{10} \theta^{-10}\right]_{4.294}^{\infty}=\frac{1}{10} 4.294^{-10}
$$

giving

$$
p(\theta \mid \boldsymbol{y})=10 * 4.294^{10} \theta^{-11} I(\theta \geq 4.294)
$$

For the absolute loss, we have that the Bayes estimate is the median.
Now

$$
\begin{aligned}
\operatorname{Pr}(\theta \leq u \mid \boldsymbol{y}) & =\int_{4.294}^{u}\left[10 * 4.294^{10} \theta^{-11}\right] d y \\
& =10 * 4.294^{10}\left[-\frac{1}{10} \theta^{-10}\right]_{4.294}^{u} \\
& =10 * 4.294^{10}\left[\frac{1}{10} 4.294^{-10}-\frac{1}{10} u^{-10}\right] \\
& =1-4.294^{10} u^{-10}
\end{aligned}
$$

and putting this to 0.5 , we obtain $\hat{\theta}=4.294 * 2^{1 / 10}=4.602$

