UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK9021 — Applied Bayesian Analysis and Numerical Methods
Day of examination:	Tuesday 13 December
Examination hours:	14.30-18.30
This problem set consists of 2 pages.	
Appendices:	Some useful formulas. List of distributions
Permitted aids:	Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

а

Suppose we have n independent and identically distributed observations $y = (y_1, \ldots, y_n)$, with

 $y_i \sim \text{Poisson}(\theta), \ i = 1, \dots, n$ $\theta \sim \text{Gamma}(\alpha, \beta)$

(i) Find the posterior distribution for θ for n = 1, hence conditional on data $y = y_1$

(ii) Then find the posterior distribution for θ for the general case of $n \ge 1$, hence conditional on data $y = (y_1, \ldots, y_n)$.

\mathbf{b}

Consider the number of pregnant women arriving at a particular hospital during July in a particular year, denoted by y. Suppose y_1, \ldots, y_5 are the numbers of pregnant women arriving at the hospital during July the last 5 years. We can assume that y_1, \ldots, y_5 are independent and identically Poisson distributed with parameter θ . The history for July prior to these last 5 years suggests that an appropriate prior distribution for θ is Gamma $(5, \frac{1}{6})$.

(i) Find the posterior mean for θ given this model and data $(y_1, \ldots, y_5) = (67, 43, 74, 37, 59)$.

(ii) For estimating θ , what loss function does the estimate from (i) correspond to?

(iii) Find the posterior variance for θ .

(Continued on page 2.)

С

The posterior predictive distribution of how many pregnant women \tilde{y} will arrive at the hospital during July next year is of particular interest. There is no information that distinguishes this year from the previous 5 years, and conditional on θ , \tilde{y} is independent of y_1, \ldots, y_5 .

(i) Show that the posterior predictive distribution for \tilde{y} is Negative-binomial.

(ii) Report the posterior predictive mean and variance for \tilde{y} given the data from b.

Problem 2

Suppose y_1, \ldots, y_n are independent and identically distributed observations with

$$y_i \sim N(\mu, \sigma^2), \ i = 1, \dots, n$$

 $\mu \sim N(\mu_0, \tau^2)$

where σ^2, μ_0, τ^2 are fixed, known quantities.

а

Derive the posterior distribution for μ . In particular, state the posterior mean and variance of μ .

\mathbf{b}

(i) Show that the posterior predictive distribution for \tilde{y} is Normal.

(ii) Find the posterior predictive mean and variance of \tilde{y} .

THE END