
The four-hour exam

Exercise 1

(a) First, yi | θ is a binomial (1, θ), with mean θ and variance θ(1 − θ). Secondly, z =�n
i=1 yi given θ is binomial (n, θ), hence with mean and variance nθ and nθ(1− θ).

(b) Now θ ∼ Beta(2, 2).

(i) The mean is 1
2
, the variance is 1

2
1
2
/5 = 1/20.

(ii) E yi = EE (yi | θ) = E θ = 1
2
, and

Var yi = EVar (yi | θ) + VarE (yi | θ)
= E θ(1− θ) + Var θ

= 1
2
− E θ2 + E θ2 − 1

4
= 1

4
.

Also, yi is a 0-1 variable, with P (yi = 1) = 1
2
; hence its variance must be 1

2
1
2
= 1

4
.

(iii) We have E (yiyj | θ) = θ2 and hence cov(yi, yj) = E θ2 − ( 1
2
)2 = Var θ, i.e. 1/20.

Hence the correlation is

ρ =
1/20

1/4
=

4

20
= 1/5 = 0.20.

(iv) We have

E z = Enθ = 1
2
n

and

Var z = Enθ(1− θ) + Varnθ = n( 1
2
− 1

4
− 1/20) + n2/20 = 0.20n+ 0.05n2.

(c) The distribution of z is

f(z) =

� 1

0

�
n

z

�
θz(1− θ)n−z6θ(1− θ) dθ

=
n!

z! (n− z)!

(z + 1)! (n− z + 1)!

(n+ 2)!

= 6
(z + 1)(n− z + 1)

n(n+ 1)

for z = 0, 1, . . . , n.

(d) The posterior is proportional to

θz(1− θ)n−zθ(1− θ) = θz+1(1− θ)n−z+1,

which is a Beta(z + 2, n− z + 2). The conditional mean is

�θB = E(θ | z) = z + 2

n+ 4
.
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(e) The standard estimator is �θ = z/n, which is unbiased. Hence the risk, the mean of

(�θ − θ)2, is θ(1− θ)/n. It starts and ends at zero, and is biggest for θ = 1
2
.

(f) The Bayes estimator has risk function

r(θ) = Var �θB + (E �θB − θ)2

=
nθ(1− θ)

(n+ 4)2
+
�nθ + 2

n+ 4
− nθ + 4θ

n+ 4

�2

=
n

(n+ 4)2
θ(1− θ) +

(4θ − 2)2

(n+ 4)2
.

It is better than the usual ML estimator for those θ where

16(θ − 1
2
)2

(n+ 4)2
≤

� 1

n
− n

(n+ 4)2

�
θ(1− θ),

or

16(θ − 1
2
)2 ≤ (n+ 4)2 − n2

n
θ(1− θ) =

16 + 8n

n
θ(1− θ),

or (θ− 1
2
)2 ≤ ( 1

2
+1/n)θ(1− θ). This means a certain interval around 1

2
, where Bayes

is better. For large n, the inequality is close to (θ − 1
2
)2 ≤ 1

2
θ(1 − θ), and this holds

for θ inside 1
2
±
√
3/6, which is [0.211, 0.789], i.e. a pretty wide interval.

Exercise 2

(a) The likelihood function becomes

L = (p(1− q))212 ((1− p)q)103 (pq)39 ((1− p)(1− q))148

= p212+39(1− p)103+148q103+39(1− q)212+148

= p251(1− p)251q142(1− q)360.

(b) With independent uniforms for p and q, the posteriors are also independent, with

p | data ∼ Beta(252, 252), q | data ∼ Beta(143, 361).

(c) The expected number of AB cases, if this theory is correct, is

eAB = E(npq | data) = n
252

502

143

502
= 71.5.

But this is far off from the observed 39. So the theory looks very suspicious, indeed.

As Landsteiner and others found out, about a hundred years ago, the two-loci theory

stinks and sucks; the one-locus theory, however, is splendid. – One may put in more

detail here, including computing the probability that one should get a number as far

off as 39 (or more), as measured through the lens of the posterior distribution for npq.

This will be a microscopic probability. The essence is simply to compare the observed
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far too small 39 with the mean of 71.5 – and, of course, similar calculations for the

other three cells.

Exercise 3

(a) The posterior density p(θ) is the derivative of the cumulative P (θ), and one finds

θ exp(−θ). This is also a gamma (2, 1). Its mean is 2. The density is zero at zero,

climbs to exp(−1) = 0.368 at the value 1, and then decreases slowly to zero.

(b) The Bayes decision is to pick among A, B, C the action that has the smallest expected

posterior loss. These three expected posterior losses are

2 {1− P (1.1)} = 2 · 0.6990 = 1.3981,

3 {P (1.1) + 1− P (3.3)} = 3 · 0.4596 = 1.3787,

4P (3.3) = 4 · 9.8414 = 3.3656,

for respectively A, B, C. So we take action B.

(c) The risk function, for a credibility interval [�a,�b] constructed from the data, becomes

r(θ) = Eθ L(θ, [�a,�b]) = 0.10Eθ (�b− �a) + 1− Pθ{θ ∈ [�a,�b]}.

A good method is one with short expected length and with high probability of con-

taining the right parameter.

(d) Again we ought to minimise posterior expected loss. This means minimising

E {L(θ, [a, b]) | data} = 0.10 (b− a) + P (a) + 1− P (b)

over (a, b). Taking derivatives leads to the equations p(a) = 0.10, p(b) = 0.10. This

again means finding a to the left of 1 and b to the right of 1, as solutions to p(x) = 0.10.

I find [a, b] = [0.112, 3.576].

Exercise 4

(a) The likelihood for the data becomes

n�

i=1

{(3θy2i ) exp(−θy3i )} ∝ θn exp(−nθWn),

where Wn = (1/n)
�n

i=1 y
3
i . Its logarithm is

ℓn(θ) = n log θ − nθWn,

with first derivative n/θ − nWn and second derivative −n/θ2. So the maximum

likelihood (ML) estimator is
�θ = 1/Wn.
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(b) The prior times the likelihood is proportional to

θa−1 exp(−bθ)θn exp(−nθWn) = θa+n−1 exp{−(b+ nWn)θ},

which means the posterior is a Gamma with parameters (a+ n, b+ nWn). Its mean,

by the way, is the Bayes estimator

�θB =
a+ n

b+ nWn
,

which is close to the ML estimator.

(c) First, by frequentist ML theory, and assuming the model is actually correct,

�θ ≈d N(θ0, θ
2
0/n),

with θ0 signalling the true parameter value. Secondly, by Bayes theory for larger

sample sizes,

θ | data ≈d N(�θ, �θ2/n).

So there’s a mirror situation, and the Bayesian and the frequentist will have the same

inferences, for large n.
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