The four-hour exam

Exercise 1

(a) First, $y_{i} \mid \theta$ is a binomial $(1, \theta)$, with mean θ and variance $\theta(1-\theta)$. Secondly, $z=$ $\sum_{i=1}^{n} y_{i}$ given θ is binomial (n, θ), hence with mean and variance $n \theta$ and $n \theta(1-\theta)$.
(b) Now $\theta \sim \operatorname{Beta}(2,2)$.
(i) The mean is $\frac{1}{2}$, the variance is $\frac{1}{2} \frac{1}{2} / 5=1 / 20$.
(ii) $\mathrm{E} y_{i}=\mathrm{E} \mathrm{E}\left(y_{i} \mid \theta\right)=\mathrm{E} \theta=\frac{1}{2}$, and

$$
\begin{aligned}
\operatorname{Var} y_{i} & =\mathrm{E} \operatorname{Var}\left(y_{i} \mid \theta\right)+\operatorname{Var} \mathrm{E}\left(y_{i} \mid \theta\right) \\
& =\mathrm{E} \theta(1-\theta)+\operatorname{Var} \theta \\
& =\frac{1}{2}-\mathrm{E} \theta^{2}+\mathrm{E} \theta^{2}-\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

Also, y_{i} is a $0-1$ variable, with $P\left(y_{i}=1\right)=\frac{1}{2}$; hence its variance must be $\frac{1}{2} \frac{1}{2}=\frac{1}{4}$.
(iii) We have $\mathrm{E}\left(y_{i} y_{j} \mid \theta\right)=\theta^{2}$ and hence $\operatorname{cov}\left(y_{i}, y_{j}\right)=\mathrm{E} \theta^{2}-\left(\frac{1}{2}\right)^{2}=\operatorname{Var} \theta$, i.e. $1 / 20$.

Hence the correlation is

$$
\rho=\frac{1 / 20}{1 / 4}=\frac{4}{20}=1 / 5=0.20 .
$$

(iv) We have

$$
\mathrm{E} z=\mathrm{E} n \theta=\frac{1}{2} n
$$

and

$$
\operatorname{Var} z=\operatorname{En} \theta(1-\theta)+\operatorname{Var} n \theta=n\left(\frac{1}{2}-\frac{1}{4}-1 / 20\right)+n^{2} / 20=0.20 n+0.05 n^{2}
$$

(c) The distribution of z is

$$
\begin{aligned}
f(z) & =\int_{0}^{1}\binom{n}{z} \theta^{z}(1-\theta)^{n-z} 6 \theta(1-\theta) \mathrm{d} \theta \\
& =\frac{n!}{z!(n-z)!} \frac{(z+1)!(n-z+1)!}{(n+2)!} \\
& =6 \frac{(z+1)(n-z+1)}{n(n+1)}
\end{aligned}
$$

for $z=0,1, \ldots, n$.
(d) The posterior is proportional to

$$
\theta^{z}(1-\theta)^{n-z} \theta(1-\theta)=\theta^{z+1}(1-\theta)^{n-z+1}
$$

which is a $\operatorname{Beta}(z+2, n-z+2)$. The conditional mean is

$$
\widehat{\theta}_{B}=\mathrm{E}(\theta \mid z)=\frac{z+2}{n+4} .
$$

(e) The standard estimator is $\widetilde{\theta}=z / n$, which is unbiased. Hence the risk, the mean of $(\widetilde{\theta}-\theta)^{2}$, is $\theta(1-\theta) / n$. It starts and ends at zero, and is biggest for $\theta=\frac{1}{2}$.
(f) The Bayes estimator has risk function

$$
\begin{aligned}
r(\theta) & =\operatorname{Var} \widehat{\theta}_{B}+\left(\mathrm{E} \widehat{\theta}_{B}-\theta\right)^{2} \\
& =\frac{n \theta(1-\theta)}{(n+4)^{2}}+\left(\frac{n \theta+2}{n+4}-\frac{n \theta+4 \theta}{n+4}\right)^{2} \\
& =\frac{n}{(n+4)^{2}} \theta(1-\theta)+\frac{(4 \theta-2)^{2}}{(n+4)^{2}} .
\end{aligned}
$$

It is better than the usual ML estimator for those θ where

$$
\frac{16\left(\theta-\frac{1}{2}\right)^{2}}{(n+4)^{2}} \leq\left\{\frac{1}{n}-\frac{n}{(n+4)^{2}}\right\} \theta(1-\theta)
$$

or

$$
16\left(\theta-\frac{1}{2}\right)^{2} \leq \frac{(n+4)^{2}-n^{2}}{n} \theta(1-\theta)=\frac{16+8 n}{n} \theta(1-\theta),
$$

or $\left(\theta-\frac{1}{2}\right)^{2} \leq\left(\frac{1}{2}+1 / n\right) \theta(1-\theta)$. This means a certain interval around $\frac{1}{2}$, where Bayes is better. For large n, the inequality is close to $\left(\theta-\frac{1}{2}\right)^{2} \leq \frac{1}{2} \theta(1-\theta)$, and this holds for θ inside $\frac{1}{2} \pm \sqrt{3} / 6$, which is [$0.211,0.789$], i.e. a pretty wide interval.

Exercise 2

(a) The likelihood function becomes

$$
\begin{aligned}
L & =(p(1-q))^{212}((1-p) q)^{103}(p q)^{39}((1-p)(1-q))^{148} \\
& =p^{212+39}(1-p)^{103+148} q^{103+39}(1-q)^{212+148} \\
& =p^{251}(1-p)^{251} q^{142}(1-q)^{360} .
\end{aligned}
$$

(b) With independent uniforms for p and q, the posteriors are also independent, with

$$
p \mid \text { data } \sim \operatorname{Beta}(252,252), \quad q \mid \text { data } \sim \operatorname{Beta}(143,361)
$$

(c) The expected number of AB cases, if this theory is correct, is

$$
e_{A B}=\mathrm{E}(n p q \mid \text { data })=n \frac{252}{502} \frac{143}{502}=71.5 .
$$

But this is far off from the observed 39. So the theory looks very suspicious, indeed. As Landsteiner and others found out, about a hundred years ago, the two-loci theory stinks and sucks; the one-locus theory, however, is splendid. - One may put in more detail here, including computing the probability that one should get a number as far off as 39 (or more), as measured through the lens of the posterior distribution for $n p q$. This will be a microscopic probability. The essence is simply to compare the observed
far too small 39 with the mean of 71.5 - and, of course, similar calculations for the other three cells.

Exercise 3

(a) The posterior density $p(\theta)$ is the derivative of the cumulative $P(\theta)$, and one finds $\theta \exp (-\theta)$. This is also a gamma $(2,1)$. Its mean is 2 . The density is zero at zero, climbs to $\exp (-1)=0.368$ at the value 1 , and then decreases slowly to zero.
(b) The Bayes decision is to pick among A, B, C the action that has the smallest expected posterior loss. These three expected posterior losses are

$$
\begin{aligned}
& 2\{1-P(1.1)\}=2 \cdot 0.6990=1.3981, \\
& 3\{P(1.1)+1-P(3.3)\}=3 \cdot 0.4596=1.3787, \\
& 4 P(3.3)=4 \cdot 9.8414=3.3656,
\end{aligned}
$$

for respectively A, B, C. So we take action B.
(c) The risk function, for a credibility interval $[\widehat{a}, \widehat{b}]$ constructed from the data, becomes

$$
r(\theta)=\mathrm{E}_{\theta} L(\theta,[\widehat{a}, \widehat{b}])=0.10 E_{\theta}(\widehat{b}-\widehat{a})+1-P_{\theta}\{\theta \in[\widehat{a}, \widehat{b}]\}
$$

A good method is one with short expected length and with high probability of containing the right parameter.
(d) Again we ought to minimise posterior expected loss. This means minimising

$$
\mathrm{E}\{L(\theta,[a, b]) \mid \text { data }\}=0.10(b-a)+P(a)+1-P(b)
$$

over (a, b). Taking derivatives leads to the equations $p(a)=0.10, p(b)=0.10$. This again means finding a to the left of 1 and b to the right of 1 , as solutions to $p(x)=0.10$. I find $[a, b]=[0.112,3.576]$.

Exercise 4

(a) The likelihood for the data becomes

$$
\prod_{i=1}^{n}\left\{\left(3 \theta y_{i}^{2}\right) \exp \left(-\theta y_{i}^{3}\right)\right\} \propto \theta^{n} \exp \left(-n \theta W_{n}\right)
$$

where $W_{n}=(1 / n) \sum_{i=1}^{n} y_{i}^{3}$. Its logarithm is

$$
\ell_{n}(\theta)=n \log \theta-n \theta W_{n},
$$

with first derivative $n / \theta-n W_{n}$ and second derivative $-n / \theta^{2}$. So the maximum likelihood (ML) estimator is

$$
\widehat{\theta}=1 / W_{n} .
$$

(b) The prior times the likelihood is proportional to

$$
\theta^{a-1} \exp (-b \theta) \theta^{n} \exp \left(-n \theta W_{n}\right)=\theta^{a+n-1} \exp \left\{-\left(b+n W_{n}\right) \theta\right\},
$$

which means the posterior is a Gamma with parameters $\left(a+n, b+n W_{n}\right)$. Its mean, by the way, is the Bayes estimator

$$
\widehat{\theta}_{B}=\frac{a+n}{b+n W_{n}}
$$

which is close to the ML estimator.
(c) First, by frequentist ML theory, and assuming the model is actually correct,

$$
\widehat{\theta} \approx_{d} \mathrm{~N}\left(\theta_{0}, \theta_{0}^{2} / n\right)
$$

with θ_{0} signalling the true parameter value. Secondly, by Bayes theory for larger sample sizes,

$$
\theta \mid \text { data } \approx_{d} \mathrm{~N}\left(\widehat{\theta}, \widehat{\theta}^{2} / n\right) .
$$

So there's a mirror situation, and the Bayesian and the frequentist will have the same inferences, for large n.

