The four-hour exam

Exercise 1

(a) First, y; |0 is a binomial (1,0), with mean 6 and variance (1 — 6). Secondly, z =

> i, yi given 6 is binomial (n, d), hence with mean and variance nf and nf(1 — ).
(b) Now 6 ~ Beta(2,2).

(i) The mean is 1

1, the variance is 11 /5 = 1/20.
(ii) Ey; =EE (y;|0) =E6f = 1, and

Vary; = EVar (y; |0) + VarE (y; | 0)
=EOH(1 —0) + Vard
=;—-E0*+E¢* -1 =1

Z.
Also, y; is a 0-1 variable, with P(y; = 1) = %; hence its variance must be 11 =
(iii) We have E (y;y; |0) = 6% and hence cov(y;,y;) = E6% — (

1 1
22 = 1-
)% = Vard, ie. 1/20.

Hence the correlation is

120 4

— =1/5=0.20.
1z 0 /P=020
(iv) We have

Ez=Enf = %n
and

Varz = Enf(1 — 0) + Varnf = n(3 — 1 —1/20) +n*/20 = 0.20n + 0.05n>.
(¢) The distribution of z is

f(2) = /01 <Z) 6*(1 — )" =60(1 — 6) dd

_ n! (z+ D! (n—2z4+1)!

2l (n — z)! (n+2)!
(z+1)(n—2+1)
n(n+1)

for z=0,1,.

coy M.

(d) The posterior is proportional to

67 (1— 0)"29(1 — 0) = 6>+ (1 — o) >+1,

which is a Beta(z + 2,n — z + 2). The conditional mean is

~ z+ 2
HB:E(G\z):n+4




(e) The standard estimator is § = z/n, which is unbiased. Hence the risk, the mean of
(0 —0)2,is 6(1 — 0)/n. It starts and ends at zero, and is biggest for § = 1

(f) The Bayes estimator has risk function

r(6) = Varfp + (Efp — 0)>
nd(1 —0) <n9+2 n9+40>2

- (n+4)2 n+ 4 n+4
B n B (46 — 2)?
BRCE A Ry oy e

It is better than the usual ML estimator for those 8 where

16(0 — 1)2 n
(n+4)2 - {E B (n+4)2}9(1_9)’

or
2 _ 2
(n+4) n&(l—@) 16 + 8n

16(0 — 1)* < - -

(1 - 0),

or (0 —1)? < (3 +1/n)0(1—0). This means a certain interval around 1, where Bayes

is better. For large n, the inequality is close to (6 — 3)* < 16(1 — 6), and this holds
for 6 inside % + /3/6, which is [0.211,0.789], i.e. a pretty wide interval.
Exercise 2

(a) The likelihood function becomes

L=(p(1—q)* (1 -p))"” (pg)* (1 —p)(1 —q))**®
— p212—|—39(1 - p)103+148q103+39(1 . q)212—|—148

= p?l(1 - p)®Lgl42(1 — q)360.
(b) With independent uniforms for p and ¢, the posteriors are also independent, with

p|data ~ Beta(252,252), ¢|data ~ Beta(143,361).

(c) The expected number of AB cases, if this theory is correct, is

252143
eap = E(npq|data) = N5 0D 71.5.
But this is far off from the observed 39. So the theory looks very suspicious, indeed.
As Landsteiner and others found out, about a hundred years ago, the two-loci theory
stinks and sucks; the one-locus theory, however, is splendid. — One may put in more
detail here, including computing the probability that one should get a number as far
off as 39 (or more), as measured through the lens of the posterior distribution for npgq.

This will be a microscopic probability. The essence is simply to compare the observed
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far too small 39 with the mean of 71.5 — and, of course, similar calculations for the
other three cells.
Exercise 3

The posterior density p(6) is the derivative of the cumulative P(f), and one finds
O exp(—0). This is also a gamma (2,1). Its mean is 2. The density is zero at zero,
climbs to exp(—1) = 0.368 at the value 1, and then decreases slowly to zero.

The Bayes decision is to pick among A, B, C the action that has the smallest expected
posterior loss. These three expected posterior losses are

2{1— P(1.1)} = 2-0.6990 = 1.3981,

3{P(1.1) +1— P(3.3)} = 3-0.4596 = 1.3787,
4P(3.3) = 4-9.8414 = 3.3656,

for respectively A, B, C. So we take action B.

The risk function, for a credibility interval [a, b] constructed from the data, becomes
r(0) = E¢ L(6,[a,b]) = 0.10 By (b — @) + 1 — Py{6 < [a, b]}.

A good method is one with short expected length and with high probability of con-
taining the right parameter.

Again we ought to minimise posterior expected loss. This means minimising
E{L(#,]a,b])|data} =0.10 (b — a) + P(a) + 1 — P(b)

over (a,b). Taking derivatives leads to the equations p(a) = 0.10, p(b) = 0.10. This
again means finding a to the left of 1 and b to the right of 1, as solutions to p(x) = 0.10.
I find [a,b] = [0.112,3.576].

Exercise 4

The likelihood for the data becomes

[ 1{(30u7) exp(=0y7)} o 0" exp(-no W),
i=1
where W,, = (1/n) >, y3. Its logarithm is
0,(0) = nlogl — ndW,,

with first derivative n/6 — nW,, and second derivative —n/#%. So the maximum
likelihood (ML) estimator is
0=1/W,.
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(b)

The prior times the likelihood is proportional to
0%~ exp(—b0)0" exp(—ndW,,) = 0°T" L exp{—(b+ nW,, )0},

which means the posterior is a Gamma with parameters (a + n,b+ nW,,). Its mean,
by the way, is the Bayes estimator

é\ . a+n
By yaw,

which is close to the ML estimator.
First, by frequentist ML theory, and assuming the model is actually correct,

0 ~4 N(6o, 62 /n),

with 6y signalling the true parameter value. Secondly, by Bayes theory for larger
sample sizes,

0 | data ~q N(0, 6% /n).

So there’s a mirror situation, and the Bayesian and the frequentist will have the same
inferences, for large n.



