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This problem set consists of 5 pages.
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candidate’s own personal notes.
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Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 Poisson-Gamma

We will start with some questions concerning Poisson distributed data. In
this exercise (and also the next one), you might find the following formula
useful, ∫ ∞

0
xa−1e−bxdx =

Γ(a)

ba
,

for positive numbers a and b. Also remember the following identity:
Γ(a+ 1) = aΓ(a).

Consider n independent observations from a Poisson distribution with
parameter θ (and with density f(yi | θ) = θyie−θ/yi!). In this exercise we
will use the following Gamma prior for θ,

p(θ) =
ba

Γ(a)
θa−1e−bθ.

The prior mean and variance can be expressed as E(θ) = a/b and Var(θ) =
a/b2.

a

(i) Find the posterior distribution for θ for n = 1, i.e. conditional on one
observation y = y1.
(ii) Then find the posterior distribution for θ for the general case of n ≥ 1,
i.e. conditional on data y = (y1, . . . , yn).

b

(i) Provide expressions for the marginal mean and variance of yi.
(ii) Find the marginal covariance and correlation between yi and yj , where
i 6= j.

(Continued on page 2.)
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c

Find an explicit formula for the posterior predictive distribution of a new
observation y∗. Describe briefly how you would sample from this posterior
predictive distribution in practice (using for example R).

d

In this subquestion, we forget the Poisson-Gamma set-up for a moment and
consider a general model f(y | θ) and prior p(θ) leading to a posterior p(θ | y).
Consider the loss function L(θ, θ̂) = (θ − θ̂)2/θ for a positive parameter θ.
Show that the Bayes estimator (or Bayes action if you want) related to this
loss function is

θ̂B =

[
E

(
1

θ
| y
)]−1

.

e

Now we are back to our n Poisson observations from Pois(θ), with a
Gamma(a, b) prior as specified in the beginning of the exercise. Use the
formula from d to find the Bayes estimator θ̂B in this case.

f

Still considering the loss function L(θ, θ̂) = (θ−θ̂)2/θ, find the risk function of
the Bayes estimator θ̂B from e. Also derive the risk function of the frequentist
estimator θ̂F = ȳ. In what part of the θ space is the Bayes estimator better
than the frequentist estimator?

Problem 2 Seven exponential experiments

Assume we have k different (and independent) experiments with potentially
different sample sizes ni in each experiment. Let Yi,j be the jth observation
from the ith experiment, where i = 1, . . . , k and j = 1, . . . , ni. The
observations are assumed to be independent and exponentially distributed,

Yi,j |λi ∼ Expo(λi),

with experiment-specific parameters λi (the exponential density is, as usual,
f(yi,j |λi) = λie

−λiyi,j ). Based on our knowledge of these experiments, we
have chosen a common Gamma prior for the λi,

λi ∼ Gamma(α, β).

In the table on the next page we provide the experiment-specific sample
sizes and means (ȳi· =

∑ni
j=1 yi,j/ni) for k = 7 experiments. (This table is

provided for concreteness, but you are not required to use the numbers in
any calculations.)

(Continued on page 3.)
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Experiment 1 2 3 4 5 6 7

ni 4 9 12 3 5 7 8
ȳi· 0.37 1.89 0.70 0.37 0.44 0.65 0.40

a

First we will consider each experiment separately.
(i) Show that the maximum likelihood estimator for λi (based on the data
from study i only) is λ̂ML,i = 1/ȳi·.
(ii) Find the posterior distribution for λi based on the data from study i
(using the Gamma prior above).
(iii) Show that the Bayes estimate under quadratic loss may be expressed as
the following function of α and β:

λ̂B,i = λ̂i(α, β) = ωi
α

β
+ (1− ωi)

1

ȳi·

with ωi = β/(β + niȳi·).
(iv) Find the marginal density of yi, the vector of observation from
experiment i.

b

Consider now the full dataset from the k experiments. Use the result from
question a (iv) and find an expression for the marginal log-likelihood function
for the full dataset. Then explain how you would use this marginal log-
likelihood function in order to estimate α and β from the data (using for
example R or similar software).

c

Estimating prior parameters from the data corresponds to a so-called
empirical Bayes (EB) strategy. Explain how you would use this strategy
for estimating the ensemble of λi parameters. The results of the EB strategy
are presented in Figure 1. Comment on the difference between EB and
maximum likelihood estimates in this case. What seems to be the effect
of the experiment-specific sample sizes (ni)? Also comment briefly on how
well you would expect this strategy to work, compared e.g. to the standard
maximum likelihood method.

d

The empirical Bayes strategy may be considered an approximation to the
fully Bayesian hierarchical model where we include a hyperprior for α and
β. Let this hyperprior be p(α, β).
(i) Provide an expression for the full joint (unnormalised) posterior in this
case, p(λ, α, β |y); λ denotes the vector of seven λi and y denotes the full
dataset from all the experiments.
(ii) This question and the next will concern how to sample from this joint
posterior using computational methods. First, explain why, in this case, the
structure of the model allows you to avoid making an MCMC for the full

(Continued on page 4.)
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Figure 1: Estimated λi from the seven experiments. The black crosses are
the estimates based on maximum likelihood (for each study separately). The
red dots are estimates using an empirical Bayes strategy. The red line gives
the estimated prior expectation.

vector of parameters (λ, α, β). Then, provide an expression for p(α, β |y)
(up to a constant of proportionality).
(iii) Briefly sketch how you would construct a Metropolis MCMC in order
to sample from p(α, β |y). Include a brief description of the general
algorithm, how you would compute acceptance probabilities and which
proposal distribution you might use.

Problem 3 The lost submarine

In this exercise we consider two observations from a continuous uniform
distribution of the following type,

Yi | θ ∼ Unif(θ − 5, θ + 5)

with i = 1, 2. Thus, the maximal spread (distance) between the data is
known, but the center θ is not (and lives on (−∞,+∞)). In parts of the
literature, this set-up is presented as a story about an attempt to localise
a submerged submarine, but this aspect is not crucial for the rest of this
exercise. The density function is

f(yi | θ) =

{
1
10 , for yi ∈ [θ − 5, θ + 5]

0, otherwise.

a

Give an expression for the likelihood function for θ based on the two
observations.

(Continued on page 5.)
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b

In the following, we will use the following improper prior for θ, p(θ) ∝ 1.
Show that the posterior distribution for θ based on the two observations is
equal to

p(θ | y1, y2) =

{
1

10−D , for θ ∈ [ymax − 5, ymin + 5]

0, otherwise,

with D = |y1 − y2|, ymax = max(y1, y2) and ymin = min(y1, y2).

c

Find an expression for the posterior cumulative distribution function and the
posterior quantile function. Use this to construct a 95% posterior interval
for the following data: y1 = −4.1 and y2 = 2.8.

d

A certain decision needs to be made, either A or B. The loss function is

L(θ,A) =

{
0 if θ ≥ 0,

10, if θ < 0,

L(θ,B) =

{
20 if θ ≥ 0,

0, if θ < 0.

Find the right decision (using the same two datapoints as in d).

THE END


