
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK4021/STK9021 –– Applied Bayesian
Analysis and Numerical Methods

Day of examination: Wednesday 19th of December 2018

Examination hours: 09:00 – 13:00

This problem set consists of 4 pages.

Appendices: None

Permitted aids: One single sheet of paper with the
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Solution

Problem 1 Poisson-Gamma

a

(i)
θ | y1 ∼ Gamma(a+ y1, b+ 1)

(ii)
θ |y ∼ Gamma(a+ nȳ, b+ n)

b

(i) E(Yi) = a/b Var(Yi) = a(b+ 1)/b2

(ii) Cov(Yi, Yj) = a/b2 Cor(Yi, Yj) = 1/(b+ 1)

c

f(y∗ |y) =

∫ ∞
0

f(y∗ | θ)p(θ |y)dθ =
1

y∗!

Γ(a+ nȳ + y∗)

Γ(a+ nȳ)

(b+ n)a+nȳ

(b+ n+ 1)a+nȳ+y∗

To sample from predictive distribution:

• sample θ(j) from posterior

• then sample observations from Poisson distribution with parameter θ(j)

(Continued on page 2.)
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d

The Bayes estimator is the t minimising g(t) = E[L(θ, t) | y] (the posterior
loss). A bit of work gives g(t) = E[θ | y]− 2t + 2t2E[1/θ | y]. Differentiating
this wrt t and solving gives the right answer:

θ̂B =

[
E

(
1

θ
| y
)]−1

.

e

First integrate (and simplify) to find that E[1/θ | y] = (b+ n)/(a+ nȳ − 1).
Then we have

θ̂B =
a+ nȳ − 1

b+ n

(some might note that this is the posterior mode). For the next subquestion
it might be smart to express the estimator as,

θ̂B = ω
a− 1

b
+ (1− ω)ȳ,

where ω = b/(b+ n). (So a combination of prior mode and data mean).

f

I get

R(θ̂B, θ) =
(1− ω)2

n
+
ω2

θ

(
a− 1

b
− θ
)2

,

and R(θ̂F , θ) = 1/n ( a constant!). Bayes estimator is best when the true θ
is reasonably close to the prior mode, i.e. when

1

θ

(
a− 1

b
− θ
)2

<
1

n
+

2

b
.

Problem 2 Seven exponential experiments

a

First we will consider each experiment separately.
(i) Here one should state the log-likelihood function for θi based on the data
from experiment i, `ni(θi) = ni log θi − θiniȳi·. Then differentiate wrt to θi
and solve: λ̂ML,i = 1/ȳi·.
(ii)

λi |yi ∼ Gamma(α+ ni, β + niȳi·).

(iii) Here it is sufficient to refer to the course: the Bayes estimate under
quadratic loss is the posterior expectation. Then use formula for the
expectation of a gamma:

λ̂B,i = λ̂i(α, β) =
α+ ni
β + niyi·

= ωi
α

β
+ (1− ωi)

1

ȳi·

with ωi = β/(β + niȳi·).
(iv) Integrate likelihood Lni(θi) times prior over θi space and find

f(yi) =
βα

(β + niȳi·)α+ni

Γ(α+ ni)

Γ(α)
.

(Continued on page 3.)
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b

`k(α, β) =

k∑
i=1

logf(yi) = kα log β−
k∑
i=1

(α+ni) log(β+niȳi·)+

k∑
i=1

log Γ(α+ni)−k log Γ(α).

A good answer should briefly state that this log-likelihood function can easily
be programmed in R and then optimised wrt α and β (in order to obtain α̂
and β̂).

c

λ̂EB,i = λ̂i(α̂, β̂) gives us the EB estimators (some might comment that the
expression indicates that all the estimates are shrunk towards the estimated
prior mean). Refer to the figure and comment that we see the typical
"borrowing strength" effect of EB: the EB estimators are shrunk towards
some common "mean". The student should indicate that experiments with
small sample sizes seem to be shrunk more (more precisely maybe that
experiments with a small

∑ni
j=1 yi,j are shrunk more). Lastly, one can refer

to "course knowledge" that EB estimators typically work well (in terms of
risk functions!) in parts of the λ space (but not usually uniformly better
than ML). Typically, EB will be good if the true λi are not too far from each
other.

d

(i) Provide an expression for the full joint (unormalised) posterior:

p(λ, α, β |y) ∝ p(α, β)p(λ |α, β)f(y |λ)

∝ p(α, β)

7∏
i=1

βα

Γ(α)
λα−1
i e−βλi

7∏
i=1

λni
i e
−λiniȳi· .

(ii) Given (α, β) the λi can be sampled directly (from gamma distributions).
Provide an expression for p(α, β |y):

p(α, β |y) =
p(λ, α, β |y)

p(λ, |y, α, β)
∝ p(α, β)

[
βα

Γ(α)

]7 7∏
i=1

Γ(α+ ni)

(β + niȳi·)α+ni

(iii) An answer might include

• a brief general overview of the general MCMC algorithm. Goal: make
a markov chain whose stationary distribution is equal to the posterior
distribution we are aiming at. After initialising the chain at (α0, β0),
the algorithm basically contains three steps: (1) proposal of a value
(αp, βp), (2) computation of acceptance probability, (3) decision to
stay a previous value or accept the new value.

• the acceptance probability at the lth iteration in this specific case
will be min(1, p(αp, βp |y)/p(αl−1, βl−1 |y)) using the expression of
p(α, β |y) from the previous question.

• I would use a simple binormal distribution for the proposal, with
expectation equal to the previous values (αl−1, βl−1), zero correlation
(for simplicity) and variances scaled to some reasonable values (not too
large, not too small - one should monitor the overall acceptance rate
in order to tune this).

(Continued on page 4.)
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Problem 3 Submarine example

a

L2(θ) =

(
1

10

)2

I[ymax − 5 ≤ θ ≤ ymin + 5]

b

Show that (here one needs to use Bayes formula, and compute the
normalising constant)

p(θ | y1, y2) =

{
1

10−D , for θ ∈ [ymax − 5, ymin + 5]

0, otherwise,

with D = |y1 − y2|, ymax = max(y1, y2) and ymin = min(y1, y2).

c

Posterior cdf:

P (θ) =


0, for θ < ymax − 5
θ+5−ymax

10−D , for θ ∈ [ymax − 5, ymin + 5]

1, for θ > ymin + 5

Posterior quantile function (inverse cdf):

P−1(u) = ymax − 5 + u(10−D)

A 95% posterior interval for the following data: y1 = −4.1 and y2 = 2.8.
[−2.1225; 0.8225]

d

Here one needs to consider g(a), the posterior loss of each action. I find:

g(A) = 10P (0) g(B) = 20(1− P (0)).

Both quantities depend on P (0), the posterior cdf evaluated at 0. For the
data provided we have P (0) = 0.71, giving

g(A) = 7.1 g(B) = 5.8.

Thus B is the Bayes action in this case.

THE END


