UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:
STK4021 - Applied Bayesian statistics - Home exam
Day of examination: November 30-2021
Examination hours: 15.00-19.00.
This problem set consists of 5 pages.
Appendices: None
Permitted aids: Anything available

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

(a) We have

$$
r_{c}(\theta)=E(y-\theta)^{2}=\operatorname{Var}[y]=1 .
$$

(b) We get directly that (θ, y) is multivariate Gaussian. We have that

$$
\begin{aligned}
E[y] & =E[E[y \mid \theta]]=E[\theta]=0 \\
\operatorname{Var}[y] & =E[\operatorname{Var}[y \mid \theta]]+\operatorname{Var}[E[y \mid \theta]]=E[1]+\operatorname{Var}\left[\sigma^{2}\right]=1+\sigma^{2} \\
\operatorname{Cov}[\theta, y] & =E[\operatorname{Cov}[y, \theta \mid \theta]]+\operatorname{Cov}\left[E[y \mid \theta], E[\theta \mid \theta]=0+\operatorname{Cov}[\theta, \theta]=\sigma^{2}\right.
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
E[L(\theta, \hat{\theta}) \mid y]= & E\left[(\theta-\hat{\theta})^{2} \mid y\right] \\
= & E\left[(\theta-E[\theta \mid y]+E[\theta \mid y]-\hat{\theta})^{2} \mid y\right] \\
= & E\left[(\theta-E[\theta \mid y])^{2} \mid y\right]+E\left[(E[\theta \mid y]-\hat{\theta})^{2} \mid y\right]+ \\
& 2 E[(\theta-E[\theta \mid y])(E[\theta \mid y]-\hat{\theta}) \mid y]
\end{aligned}
$$

$$
\operatorname{Var}[\theta \mid y]+(E[\theta \mid y]-\hat{\theta})^{2}+0
$$

showing that choosing $\hat{\theta}=E[\theta \mid y]$ is the optimal choise.
Note that $E\left[\hat{\theta}_{B} \mid \theta\right]=\rho \theta$ and $\operatorname{Var}\left[\hat{\theta}_{B} \mid \theta\right]=\rho^{2}$
The risk becomes

$$
\begin{aligned}
E\left[(\theta-\hat{\theta})^{2}\right] & =E\left[(\hat{\theta}-\rho \theta+\rho \theta-\theta)^{2}\right] \\
& =E\left[(\hat{\theta}-\rho \theta)^{2}\right]+\theta^{2}(1-\rho)^{2}+0 \\
& =\rho^{2}+(1-\rho)^{2} \theta^{2}
\end{aligned}
$$

We then have $\rho^{2}+(1-\rho)^{2} \theta^{2}<1$ when $\theta^{2}<(1+\rho) /(1-\rho)=2 \sigma^{2}+1$.
(d) Since $y_{i} \sim N\left(0, \sigma^{2}+1\right)$, we could use $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}-1$.

Problem 2

(a) We have

$$
\begin{aligned}
p(\theta \mid y) & \propto p(\theta) p(y \mid \theta) \\
& \propto(1-\theta)^{y-2} \theta^{2} \propto \operatorname{Beta}(3, y-1)
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
p(y) & =p(y \mid \theta) p(\theta) d \theta \\
& =\int_{\theta}(y-1)(1-\theta)^{y-2} \theta^{2} d \theta \\
& =(y-1) \frac{\Gamma(3) \Gamma(y-1)}{\Gamma(3+y-1)} \int_{\theta} \frac{\Gamma(3+y-1)}{\Gamma(3) \Gamma(y-1)} \theta^{3-1}(1-\theta)^{y-1-1} \\
& =(y-1) \frac{\Gamma(3) \Gamma(y-1)}{\Gamma(3+y-1)}
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
L(\theta) & =\prod_{i=1}^{n} p\left(y_{i} \mid \theta\right)=(1-\theta)^{\sum_{i=1}^{n} y_{i}-2 n} \theta^{2 n} \prod_{i=1}^{n}\left(y_{i}-1\right), \\
l(\theta) & =\sum_{i=1}^{n} \log p\left(y_{i} \mid \theta\right) \\
& =\left(\sum_{i=1}^{n} y_{i}-2 n\right) \log (1-\theta)+2 n \log (\theta)+\sum_{i=1}^{n} \log \left(y_{i}-1\right), \\
\frac{\partial}{\partial \theta} l(\theta) & =-\frac{\sum_{i=1}^{n} y_{i}-2 n}{1-\theta}+\frac{2 n}{\theta}
\end{aligned}
$$

Putting derivative to zero gives

$$
2 n(1-\hat{\theta})=\left(\sum_{i=1}^{n} y_{i}-2 n\right) \hat{\theta}
$$

or $\hat{\theta}=2 n / \sum_{i=1}^{n} y_{i}=2 / \bar{y}$.
(d) Normal approximation: We have

$$
-\frac{\partial^{2}}{\partial^{2} \theta} l(\theta)=\frac{\sum_{i=1}^{n} y_{i}-2 n}{(1-\theta)^{2}}+\frac{2 n}{\theta^{2}}=\hat{\sigma}^{-2}
$$

and $p(\theta \mid y) \approx N\left(\hat{\theta}, \hat{\sigma}^{2}\right)$.
(Continued on page 3.)
(e) We have

$$
\begin{aligned}
p(\theta \mid y) & \propto p(\theta) p(\boldsymbol{y} \mid \theta) \\
& \propto \theta^{a-1}(1-\theta)^{b-1}(1-\theta)^{\sum_{i} y_{i}-2 n} \theta^{2 n} \propto \operatorname{Beta}(a+2 n, b+n \bar{y}-2 n)
\end{aligned}
$$

which gives

$$
E[\theta \mid \boldsymbol{y}]=\frac{a+2 n}{a+2 n+b+n \bar{y}-2 n}=\frac{a+2 n}{a+b+n \bar{y}}
$$

(f) We have

$$
\begin{aligned}
p\left(y_{11} \mid \boldsymbol{y}_{1: 10}\right)= & \int_{\theta} p\left(y_{11} \mid \theta\right) p\left(\theta \mid \boldsymbol{y}_{1: 10} d \theta\right. \\
= & \int_{\theta} p\left(y_{11} \mid \theta\right) \operatorname{Beta}(21,71) d \theta \\
= & \int_{\theta}\left(y_{11}-1\right)(1-\theta)^{y_{11}-2} \theta^{2} \frac{\Gamma(92)}{\Gamma(21) \Gamma(71)} \theta^{21-1}(1-\theta)^{71-1} d \theta \\
= & \left(y_{11}-1\right) \frac{\Gamma(92)}{\Gamma(21) \Gamma(71)} \frac{\Gamma(23) \Gamma\left(69+y_{11}\right)}{\Gamma\left(92+y_{11}\right)} \\
& \int_{\theta} \frac{\Gamma\left(92+y_{11}\right)}{\Gamma(23) \Gamma\left(69+y_{11}\right)} \theta^{23-1}(1-\theta)^{69+y_{11}-1} d \theta \\
= & \left(y_{11}-1\right) \frac{\Gamma(92)}{\Gamma(21) \Gamma(71)} \frac{\Gamma(23) \Gamma\left(69+y_{11}\right)}{\Gamma\left(92+y_{11}\right)}
\end{aligned}
$$

Problem 3

(a) We have

$$
\begin{aligned}
& \operatorname{Pr}(c=1 \mid y)=\frac{\operatorname{Pr}(c=1) p(y \mid c=1)}{p(y)} \\
& \propto f_{1}(y) \\
& \operatorname{Pr}(c=2 \mid y)=\frac{\operatorname{Pr}(c=2) p(y \mid c=2)}{p(y)} \\
& \propto f_{2}(y)
\end{aligned}
$$

And due to that $\operatorname{Pr}(c=1 \mid y)+\operatorname{Pr}(c=2 \mid y)=1$, we obtain

$$
\begin{aligned}
& \operatorname{Pr}(c=1 \mid y)=\frac{f_{1}(y)}{f_{1}(y)+f_{2}(y)} \\
& \operatorname{Pr}(c=2 \mid y)=\frac{f_{2}(y)}{f_{1}(y)+f_{2}(y)}
\end{aligned}
$$

(b) We have

$$
E[L(c, 1) \mid y]=E[I(\hat{c}=1, c=2) \mid y]=E[I(c=2 \mid y)]=\operatorname{Pr}(c=2 \mid y)=1-\operatorname{Pr}(c=1 \mid y)
$$ and similarly for $E[L(c, 2)]$

(c) We also have

$$
E[L(c, D) \mid y]=0.1
$$

for any y. This means that we will make the decisions

$$
\begin{aligned}
\hat{c} & = \begin{cases}1 & \text { if } 1-\operatorname{Pr}(c=1 \mid y)<\min \{0.1,1-\operatorname{Pr}(c=2 \mid y)\} \\
2 & \text { if } 1-\operatorname{Pr}(c=2 \mid y)<\min \{0.1,1-\operatorname{Pr}(c=1 \mid y)\} \\
D & \text { if } 0.1<\min \{1-\operatorname{Pr}(c=1 \mid y), 1-\operatorname{Pr}(c=2 \mid y)\}\end{cases} \\
& = \begin{cases}1 & \text { if } \operatorname{Pr}(c=1 \mid y)>\max \{0.9, \operatorname{Pr}(c=2 \mid y)\} \\
2 & \text { if } \operatorname{Pr}(c=2 \mid y)>\max \{0.9, \operatorname{Pr}(c=1 \mid y)\} \\
D & \text { if } 0.9>\max \{\operatorname{Pr}(c=1 \mid y), \operatorname{Pr}(c=2 \mid y)\}\end{cases} \\
& = \begin{cases}1 & \text { if } \operatorname{Pr}(c=1 \mid y)>0.9 \\
2 & \text { if } \operatorname{Pr}(c=2 \mid y)>0.9 \\
D & \text { if } \max \{\operatorname{Pr}(c=1 \mid y), \operatorname{Pr}(c=2 \mid y)<0.9\}\end{cases}
\end{aligned}
$$

(d) We now have

$$
\begin{aligned}
\operatorname{Pr}(c=1 \mid y) & =\frac{(2 \pi)^{-1 / 2} \exp \left(-0.5(y+1)^{2}\right.}{(2 \pi)^{-1 / 2} \exp \left(-0.5(y+1)^{2}+(2 \pi)^{-1 / 2} \exp \left(-0.5(y-1)^{2}\right.\right.} \\
& =\frac{\exp \left(-0.5(y+1)^{2}\right.}{\exp \left(-0.5(y+1)^{2}+\exp \left(-0.5(y-1)^{2}\right.\right.} \\
& =\frac{1}{1+\exp \left(-0.5\left[(y-1)^{2}-(y+1)^{2}\right]\right.} \\
& =\frac{1}{1+\exp (-0.5[-4 y])}=\frac{1}{1+\exp (2 y)}
\end{aligned}
$$

We then classify to 1 if

$$
\frac{1}{1+\exp (2 y)}>0.9
$$

which is equivalent to that $y<-0.5 \log (9)$.
Similarly we classify to 2 if $y>0.5 \log (9)$.
And then to D if $-0.5 \log (9) \leq y \leq 0.5 \log (9)$.

Problem 4

(a) We have

$$
\begin{aligned}
& p\left(\theta_{1} \mid \boldsymbol{y}_{1}\right) \propto \prod_{i=1}^{5} \frac{1}{1+\left(y_{1 i}-\theta_{1}\right)^{2}} \\
& p\left(\theta_{2} \mid \boldsymbol{y}_{2}\right) \propto \prod_{i=1}^{5} \frac{1}{1+\left(y_{2 i}-\theta_{1}\right)^{2}}
\end{aligned}
$$

On can compute these on a dense grid on the region $[0,100]$, then normalize and plot these.
(b) A possibility here is to use rejection sampling simulate from the prior and then calculate importance weights. Note that an upper limit will here be 1 so we accept with probabilities

$$
\prod_{i=1}^{5} \frac{1}{1+\left(y_{1 i}-\theta_{1}\right)^{2}}
$$

for $p\left(\theta_{1} \mid \boldsymbol{y}_{1}\right)$ and similarly for θ_{2}
(c) Given samples $\left\{\theta_{1}^{s}, \theta_{2}^{s}\right\}$ we can obtain samples $\rho^{s}=\theta_{2}^{s} / \theta_{1}^{s}$ from which we can make inference through Monte Carlo estimation.

