
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK9021 –– Applied Bayesian statistics - Home exam

Day of examination: June 5 - June 12 2020

Examination hours: 14.30 – 18.30.

This problem set consists of 6 pages.

Appendices: None

Permitted aids: Anything available

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Notation:

• We will use x1:t = (x1, ..., xt).

Problem 1

Consider a normal model

y ∼ N(µ, σ2).

Define θ = (µ, σ2). Recall that the expected Fisher information matrix is
given by

J(θ) = Eθ

[
− ∂2

∂θθT
log p(y|θ)

]
(a) Show that Jeffreys’ prior model is πJ(θ) ∝ σ−3.

(b) Assume you now have observed y1, y2, ..., yn. Derive the posterior
distribution for θ.

(c) Consider a loss function L(θ, θ̂) = (θ − θ̂)2 where θ is either µ or σ2.
Find the Bayes estimator for both µ and σ2.

Compare the results with the results obtained with a prior p(θ) ∝
(σ2)−1 as considered in the textbook (both by looking at the estimators
and on their expectations).

(d) Consider now instead the loss function

L(θ, θ̂) =

{
0 if |θ̂ − θ| ≤ ε

1 if |θ̂ − θ| > ε

(Continued on page 2.)



Exam in STK9021, June 5 - June 12 2020 Page 2

Show that the Bayes estimate in this case becomes the mode of the
posterior distribution p(θ|y) when we let ε → 0. Derive the Bayes
estimates for µ and σ2 in this case.

Discuss both the result you obtained here compared to (c) and also the
rationality of this loss function.

Problem 2

The Weibull distribution is defined by

p(y|θ, σ) =
θ

σθ
yθ−1 exp(−(y/σ)θ), θ, σ > 0

and is often used for lifetime data or extreme value data. Here θ is a shape
parameter while σ is a scale parameter. For simplicity, we will assume θ is
known in this exercise.

(a) Define τ = σ−θ. Write the distribution for y expressed with (θ, τ)
instead.

(b) Show that the Gamma distribution is a conjugate family for τ in this
parametrisation of the Weibull distribution.

Derive the posterior distribution for τ based on samples y1, ..., yn which
are assumed independently distributed given (θ, σ). Also derive from
this the posterior distribution for σ.

(c) Still with θ assumed known, derive the marginal distribution for y.

Problem 3

Consider a setting where you have a prior p(θ) on a parameter θ and then
two datasets/observations y1 and y2, both with densities f(yt|θ) for t = 1, 2
(and independent given θ).

(a) Show that the posterior distribution of θ based on y1 can be considered
as a prior distribution for θ when updating information with respect to
y2, that is

p(θ|y1, y2) =p(θ|y1)
f(y2|θ)
f(y2|y1)

. (1)

(b) Assume now we have a whole sequence of data y1, y2, ..., each
conditional independent and with densities f(yt|θ) for t = 1, 2, .... Show
that you can get a similar updating scheme from t− 1 to t as (1) and
discuss how this can be used to update information about θ sequentially.

(Continued on page 3.)



Exam in STK9021, June 5 - June 12 2020 Page 3

Consider now a more general setting where there is one θt for each observation
yt such that

p(ψ, θ1:T , y1:T ) = p(ψ)p(θ1|ψ1)p(y1|θ1,ψ2)
T∏
t=2

p(θt|θt−1, ψ1)p(yt|θt,ψ2)

where ψ = (ψ1,ψ2) are some global hyperparameters influencing the {θt}
process and the observation distributions, respectively.

(c) Draw a graph similar to Figure 5.1 in the textbook that describes this
model.

(d) Assume now that we want to make sequential inference about θ1:t (and
ψ) based on data y1:t. Assume you have available p(ψ, θ1:t−1|y1:t−1)
available at time t− 1, show how you can update this to p(θ1:t|y1:t) at
time t.

In the following we will consider a specific model where

p(θt|θt−1) =N(ρθt−1, σ
2)

p(yt|θt) =Poisson(exp(βTxt + θt))

where xt are some covariates observed at time t. Here ψ1 = (ρ, σ2) and
ψ2 = β.
We will in particular look at the number of Covid-19 patients present
at hospitals for each day (data which are publically available from
Helsedirektoratet). The plot below shows the total number of all patients
within Norway.

Now, in order to analyse such data, it is better to look at the number of new
cases each day. These data are not publically available, but a proxy can be

(Continued on page 4.)



Exam in STK9021, June 5 - June 12 2020 Page 4

made by looking at the differences in the total numbers between following
days in addition to distributions of the length of hospitalization. The plot
below shows a simulation of such data which will be used in the rest of the
exercise:

Norway introduced several restrictions and reopenings. We will first define
a categorical covariate

xt =


0 if t is before March 15

1 if t is between March 15 and May 1

2 if t is after May 1

We will let xt denote the dummy variables related to xt so that

βTxt =


β0 if xt = 0

β1 if xt = 1

β2 if xt = 2

We will consider three different models, all special cases of the general model
described before.
Model 1:

p(yt) =Poisson(exp(βTxt))

Model 2:

p(θt|θt−1) =N(β0 + ρθt−1, σ
2)

p(yt|θt) =Poisson(exp(θt))

Model 3:

p(θt|θt−1) =N(ρθt−1, σ
2)

p(yt|θt) =Poisson(exp(βTxt + θt))

(Continued on page 5.)
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The plot below shows the estimates of the linear predictor on the exponential
scale (exp(βTxt+θt)) for the three models with the solid lines corresponding
to the posterior means while the dashed lines correspond to the 95%
credibility intervals (the lines for model 2 and 3 are overlapping).

The table below shows posterior means of the parameters involved, the
marginal likelihoods (mlik) and waic measures.

β0 β1 β2 σ ρ mlik pwaic waic
Model 1 1.63 2.59 0.90 -334.72 12.26 659.51
Model 2 1.69 1.06 0.70 -245.93 37.70 393.29
Model 3 1.42 2.36 0.47 0.75 0.42 -244.90 35.96 387.92

(e) Discuss the plot of the linear predictors. In particular, answer the
following questions:

• Is the covariate xt reasonably defined here?

• Why do you think the linear predictors for models 2 and 3 are so
similar in this case?

• Given that the linear predictors for models 2 and 3 are so similar,
why do you think the estimates of σ and ρ are so different?

(f) Based on the marginal likelihoods, calculate Bayes factors between the
different models.

Which model would you prefer?

What would your choice of model be if you used the waic criterion
instead?

Discuss possible discrepancies here.

(Continued on page 6.)
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Consider now yet another model,
Model 4:

p(θt|θt−1) =N(ρθt−1, σ
2)

p(yt|θt) =Neg.binomial(exp(βTxt + θt), α)

where the negative binomial distribution is parametrized by the mean (first
parameter) and the size parameter.
The plot below shows the posterior mean of the linear predictor βTxt + θt
in this case, combined with the results from model 1. Discuss the results
obtained in this case

β0 β1 β2 σ ρ α mlik pwaic waic
Model 4 1.63 0.96 -0.74 0.01 -0.00 1.99 -239.67 4.16 456.23


