UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK4021 - Applied Bayesian statistics - Home exam
Day of examination: June 5 - June 122020
Examination hours: 14.30-18.30.
This problem set consists of 5 pages.
Appendices: None
Permitted aids: Anything available

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

(a) We have that

$$
\log p(y \mid \boldsymbol{\theta})=-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}
$$

giving

$$
\begin{array}{ll}
\frac{\partial}{\partial \mu}=\frac{1}{\sigma^{2}}(y-\mu) & \frac{\partial}{\partial \sigma^{2}}=-\frac{1}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-\mu)^{2} \\
\frac{\partial^{2}}{\partial \mu^{2}}=-\frac{1}{\sigma^{2}} & \frac{\partial^{2}}{\partial \mu \sigma^{2}}=-\frac{1}{\sigma^{4}}(y-\mu) \\
& \frac{\partial^{2}}{\partial\left(\sigma^{2}\right)^{2}}=\frac{1}{2 \sigma^{4}}-\frac{1}{\sigma^{6}}(y-\mu)^{2}
\end{array}
$$

giving further

$$
\begin{aligned}
J & =E\left(\begin{array}{cc}
\frac{1}{\sigma^{2}} & \frac{1}{\sigma^{\sigma^{4}}}(y-\mu) \\
\frac{1}{\sigma^{4}}(y-\mu) & -\frac{1}{2 \sigma^{4}}+\frac{1}{\sigma^{6}}(y-\mu)^{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sigma^{2}} & 0 \\
0 & \frac{1}{2 \sigma^{4}}
\end{array}\right) \\
|\boldsymbol{J}| & =\frac{1}{2 \sigma^{6}}
\end{aligned}
$$

and Jeffreys' prior model is $\pi^{J}(\boldsymbol{\theta}) \propto \sigma^{-3}$.
(b) We get the same calculations as in sec 3.2 (eq 3.2) except that we need
to modify for the different prior. That is

$$
\begin{aligned}
p\left(\mu, \sigma^{2} \mid \boldsymbol{y}\right) & \propto \sigma^{-n-3} \exp \left(-\frac{1}{2 \sigma^{2}}\left[(n-1) s^{2}+n(\bar{y}-\mu)^{2}\right]\right) \\
p\left(\mu \mid \sigma^{2}, \boldsymbol{y}\right) & =N\left(\bar{y}, \sigma^{2} / n\right) \\
p\left(\sigma^{2} \mid y\right) & \propto \int_{\sigma} \sigma^{-(n+3)} \exp \left(-\frac{1}{2 \sigma^{2}}\left[(n-1) s^{2}+n(\bar{y}-\mu)^{2}\right]\right) d \mu \\
& \propto \sigma^{-(n+3)} \exp \left(-\frac{1}{2 \sigma^{2}}(n-1) s^{2}\right) \sqrt{2 \pi \sigma^{2} / n} \\
& \propto\left(\sigma^{2}\right)^{-(n+2) / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(n-1) s^{2}\right) \\
& \propto \operatorname{Inv}-\chi^{2}\left(n, s^{2}\right)
\end{aligned}
$$

(c) We have that under the given loss function that

$$
\begin{aligned}
\hat{\mu} & =\bar{y} \\
\hat{\sigma}^{2} & =\frac{n}{n-2} s^{2}
\end{aligned}
$$

We see that we obtain the same result as in the book for $\hat{\mu}$ and an unbiased estimate for μ.
For $\hat{\sigma}^{2}$ we would have obtained $\frac{n-1}{n-3} s^{2}$ for the alternative prior. The expectations would then be $\frac{n}{n-2} \sigma^{2}$ and $\frac{n-1}{n-3} \sigma^{3}$, respectively, so a somewhat less biased estimator for the prior considered in this exercise.
(d) We have that

$$
\begin{aligned}
E[L(\theta, \hat{\theta}) \mid \boldsymbol{y}] & =\int_{\theta} I(|\theta-\hat{\theta}|>\varepsilon) p(\theta \mid \boldsymbol{y}) d \theta \\
& =1-\operatorname{Pr}(|\theta-\hat{\theta}| \leq \varepsilon \mid \boldsymbol{y})
\end{aligned}
$$

This will, for small ε be minimized when $\hat{\theta}$ is close to the mode of $p(\theta \mid \boldsymbol{y})$.
This loss function do not consider the type of error made, only if an error is made, which is not a very reasonable setting for continous variables.

Problem 2

(a) We have

$$
f(y \mid \theta, \tau)=\theta \tau y^{\theta-1} \exp \left(-y^{\theta} \tau\right)
$$

(b) We get

$$
\begin{aligned}
p(\tau \mid \boldsymbol{y}) & \propto p(\tau) \prod_{i=1}^{n} p\left(y_{i} \mid \tau, \sigma\right) \\
& \propto \tau^{a-1} e^{-b \tau} \prod_{i=1}^{n} \theta \tau y_{i}^{\theta-1} \exp \left(-y_{i}^{\theta} \tau\right) \\
& \propto \tau^{a+n-1} \exp \left(-\left(b+\sum_{i=1}^{n} y_{i}^{\theta}\right) \tau\right) \\
& \propto \operatorname{Gamma}\left(\tau, a+n, b+\sum_{i=1}^{n} y_{i}^{\theta}\right)
\end{aligned}
$$

We then have

$$
p(\sigma \mid \boldsymbol{y})=\operatorname{Gamma}\left(\sigma^{-\theta}, a+n, b+\sum_{i=1}^{n} y_{i}^{\theta}\right) \theta \sigma^{-\theta-1}
$$

by the transformation rule.
(c) We have

$$
\begin{aligned}
p(y) & =\int_{\tau} p(y \mid \tau) d \tau \\
& =\int_{\tau} \theta \tau y^{\theta-1} \exp \left(-y^{\theta} \tau\right) \frac{b^{a}}{\Gamma(a)} \tau^{a-1} \exp (-b \tau) d \tau \\
& =\theta \frac{b^{a}}{\Gamma(a)} y^{\theta-1} \int_{\tau} \tau^{a+1-1} \exp \left(-\left(b+y^{\theta}\right) \tau\right) d \tau \\
& =\theta \frac{b^{a}}{\Gamma(a)} y^{\theta-1} \frac{\Gamma(a+1)}{\left(b+y^{\theta}\right)^{a+1}} \\
& =\frac{\theta a b^{a} y^{\theta-1}}{\left(b+y^{\theta}\right)^{a+1}}
\end{aligned}
$$

Problem 3

(a) We have

$$
\begin{aligned}
p\left(\theta \mid y_{1}, y_{2}\right) & =\frac{p(\theta) f\left(y_{1} \mid \theta\right) f\left(y_{2} \mid \theta\right)}{f\left(y_{1}, y_{2}\right)} \\
& =\frac{p(\theta) f\left(y_{1} \mid \theta\right)}{f\left(y_{1}\right)} \frac{f\left(y_{1}\right) p\left(y_{2} \mid \theta\right)}{f\left(y_{1}, y_{2}\right)} \\
& =p\left(\theta \mid y_{1}\right) \frac{f\left(y_{2} \mid \theta\right)}{f\left(y_{2} \mid y_{1}\right)}
\end{aligned}
$$

We see then that this corresponds to updating the information about θ when observing y_{2} given a "prior" $p\left(\theta \mid y_{1}\right)$.
(Continued on page 4.)
(b) In general we have

$$
\begin{aligned}
p\left(\theta \mid y_{1: t}\right) & =\frac{p(\theta) \prod_{s=1}^{t} f\left(y_{t} \mid \theta\right)}{f\left(y_{1: t}\right)} \\
& =\frac{p(\theta) f\left(y_{1: t-1} \mid \theta\right)}{f\left(y_{1: t-1}\right)} \frac{f\left(y_{1: t-1} \mid \theta\right) p\left(y_{t} \mid \theta\right)}{f\left(y_{1: t}\right)} \\
& =p\left(\theta \mid y_{1: t-1}\right) \frac{f\left(y_{t} \mid \theta\right)}{f\left(y_{t} \mid y_{1: t-1}\right)}
\end{aligned}
$$

where we see that we can sequentially update information as observations come in.
(c) See graph below:
...

(d) We now have

$$
\begin{aligned}
p\left(\boldsymbol{\psi}, \theta_{1: t} \mid y_{1: t}\right)= & \frac{p(\boldsymbol{\psi}) p\left(\theta_{1} \mid \boldsymbol{\psi}_{1}\right) p\left(y_{1} \mid \theta_{1}, \boldsymbol{\psi}_{1}\right) \prod_{s=1}^{t}\left[p\left(\theta_{s} \mid \theta_{s-1}, \boldsymbol{\psi}_{1}\right) f\left(y_{s} \mid \theta_{s}, \boldsymbol{\psi}_{2}\right)\right]}{f\left(y_{1: t}\right)} \\
= & \frac{p(\boldsymbol{\psi}) p\left(\theta_{1} \mid \boldsymbol{\psi}_{1}\right) p\left(y_{1} \mid \theta_{1}, \boldsymbol{\psi}_{2}\right) \prod_{s=1}^{t-1}\left[p\left(\theta_{s} \mid \theta_{s-1}, \boldsymbol{\psi}_{1}\right) f\left(y_{s} \mid \theta_{s}, \boldsymbol{\psi}_{2}\right)\right]}{f\left(y_{1: t-1}\right)} \times \\
& f\left(y_{: t-1}\right) \frac{p\left(\theta_{t} \mid \theta_{t-1}, \boldsymbol{\psi}_{1}\right) f\left(y_{t} \mid \theta_{t}, \boldsymbol{\psi}_{2}\right)}{f\left(y_{1: t}\right)} \\
= & p\left(\boldsymbol{\psi}, \theta_{1: t-1} \mid y_{1: t-1}\right) \frac{\left.p\left(\theta_{t} \mid \theta_{t-1}, \boldsymbol{\psi}_{1}\right)\right) p\left(y_{t} \mid \theta_{t}, \boldsymbol{\psi}_{2}\right.}{f\left(y_{t} \mid y_{1: t-1}\right)}
\end{aligned}
$$

which can be used to update the posterior as new data arrive.
(e) There also seem to be a different regime around 01/04 which x_{t} does not capture.
When both θ_{t} and the categorical variable is included, there is an overparametrization which make the β_{j} 's redundant. However, since they are given some estimated values, the definition of the θ 's become somewhat different making also the estimates of σ, ρ different.
(f) We have

BF	Model 1	Model 2	Model 3	
Model 1	$1.00 \mathrm{e}+00$	0.00	0.00	
Model 2	$2.49 \mathrm{e}+39$	1.00	0.41	
Model 3	$6.13 \mathrm{e}+39$	2.46	1.00	

rior probabilities becomes $0.00,0.29$ and 0.71 , respectively, so models 2 and 3 are comparable (and much better than model 1).
Similar results for waic.
(g) We actually now get a better model even though the linear prediction seems to neglect any variability in θ_{t}. This can be explained by that the Negative binomial distribution actually is a hierarchical model in it self with the Poisson distribution having a random rate. The variability in θ_{t} is then moved to the extra dispersion in the negative binomial distribution.

