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Problem 1

(a) We have that
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and Jeffreys’ prior model is πJ(θ) ∝ σ−3.

(b) We get the same calculations as in sec 3.2 (eq 3.2) except that we need

(Continued on page 2.)
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to modify for the different prior. That is

p(µ, σ2|y) ∝σ−n−3 exp
(
− 1

2σ2 [(n− 1)s2 + n(ȳ − µ)2]
)

p(µ|σ2,y) =N(ȳ, σ2/n)

p(σ2|y) ∝
∫
σ

σ−(n+3) exp
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2σ2 [(n− 1)s2 + n(ȳ − µ)2]
)
dµ
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)√
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∝(σ2)−(n+2)/2 exp
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∝Inv-χ2(n, s2)

(c) We have that under the given loss function that

µ̂ =ȳ

σ̂2 =
n

n− 2
s2

We see that we obtain the same result as in the book for µ̂ and an
unbiased estimate for µ.

For σ̂2 we would have obtained n−1
n−3

s2 for the alternative prior. The

expectations would then be n
n−2

σ2 and n−1
n−3

σ3, respectively, so a
somewhat less biased estimator for the prior considered in this exercise.

(d) We have that

E[L(θ, θ̂)|y] =

∫
θ

I(|θ − θ̂| > ε)p(θ|y)dθ

=1− Pr(|θ − θ̂| ≤ ε|y)

This will, for small ε be minimized when θ̂ is close to the mode of
p(θ|y).

This loss function do not consider the type of error made, only if an
error is made, which is not a very reasonable setting for continous
variables.

Problem 2

(a) We have

f(y|θ, τ) = θτyθ−1 exp(−yθτ),

(Continued on page 3.)
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(b) We get

p(τ |y) ∝p(τ)
n∏
i=1

p(yi|τ, σ)

∝τa−1e−bτ
n∏
i=1

θτyθ−1
i exp(−yθi τ)

∝τa+n−1 exp(−(b+
n∑
i=1

yθi )τ)

∝Gamma(τ, a+ n, b+
n∑
i=1

yθi )

We then have

p(σ|y) = Gamma(σ−θ, a+ n, b+
n∑
i=1

yθi )θσ
−θ−1

by the transformation rule.

(c) We have

p(y) =

∫
τ

p(y|τ)dτ

=

∫
τ

θτyθ−1 exp(−yθτ)
ba

Γ(a)
τa−1 exp(−bτ)dτ

=θ
ba

Γ(a)
yθ−1

∫
τ

τa+1−1 exp(−(b+ yθ)τ)dτ

=θ
ba

Γ(a)
yθ−1 Γ(a+ 1)

(b+ yθ)a+1

=
θabayθ−1

(b+ yθ)a+1

Problem 3

(a) We have

p(θ|y1, y2) =
p(θ)f(y1|θ)f(y2|θ)

f(y1, y2)

=
p(θ)f(y1|θ)
f(y1)

f(y1)p(y2|θ)
f(y1, y2)

=p(θ|y1)
f(y2|θ)
f(y2|y1)

We see then that this corresponds to updating the information about
θ when observing y2 given a ”prior” p(θ|y1).

(Continued on page 4.)
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(b) In general we have

p(θ|y1:t) =
p(θ)

∏t
s=1 f(yt|θ)
f(y1:t)

=
p(θ)f(y1:t−1|θ)
f(y1:t−1)

f(y1:t−1|θ)p(yt|θ)
f(y1:t)

=p(θ|y1:t−1)
f(yt|θ)

f(yt|y1:t−1)

where we see that we can sequentially update information as
observations come in.

(c) See graph below:

ψ1

· · · θt−1 θt θt+1 · · ·

yt−1 yt yt+1

ψ2

(d) We now have

p(ψ, θ1:t|y1:t) =
p(ψ)p(θ1|ψ1)p(y1|θ1,ψ1)

∏t
s=1[p(θs|θs−1,ψ1)f(ys|θs,ψ2)]

f(y1:t)

=
p(ψ)p(θ1|ψ1)p(y1|θ1,ψ2)

∏t−1
s=1[p(θs|θs−1,ψ1)f(ys|θs,ψ2)]

f(y1:t−1)
×

f(y:t−1)
p(θt|θt−1,ψ1)f(yt|θt,ψ2)

f(y1:t)

=p(ψ, θ1:t−1|y1:t−1)
p(θt|θt−1,ψ1))p(yt|θt,ψ2

f(yt|y1:t−1)

which can be used to update the posterior as new data arrive.

(e) There also seem to be a different regime around 01/04 which xt does
not capture.

When both θt and the categorical variable is included, there is an
overparametrization which make the βj’s redundant. However, since
they are given some estimated values, the definition of the θ’s become
somewhat different making also the estimates of σ, ρ different.

(f) We have

(Continued on page 5.)
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BF Model 1 Model 2 Model 3
Model 1 1.00e+00 0.00 0.00
Model 2 2.49e+39 1.00 0.41
Model 3 6.13e+39 2.46 1.00

Showing that the poste-

rior probabilities becomes 0.00, 0.29 and 0.71, respectively, so models 2
and 3 are comparable (and much better than model 1).

Similar results for waic.

(g) We actually now get a better model even though the linear prediction
seems to neglect any variability in θt. This can be explained by that
the Negative binomial distribution actually is a hierarchical model in it
self with the Poisson distribution having a random rate. The variability
in θt is then moved to the extra dispersion in the negative binomial
distribution.


