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Exam in: STK4021 –– Applied Bayesian statistics - Home exam

Day of examination: November 27 -2020

Examination hours: 15.00 – 19.00.

This problem set consists of 4 pages.

Appendices: None

Permitted aids: Anything available

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Notation:

• We will use x1:t = (x1, ..., xt).

Problem 1

(a) We have that

`(θ) ≡ logL(θ) = log

(
x+ r − 1

r − 1

)
+ r log(θ) + x log(1− θ)

∂

∂θ
`(θ) =

r

θ
− x

1− θ
∂2

∂θ2
`(θ) =− r

θ2
− x

(1− θ)2
< 0

and putting the derivative to zero, we obtain θ̂ML = r
x+r

(which is a
max point due to that the second derivative is negative).

(b) We have

p(θ|x) ∝p(θ)p(x|θ)
∝θa−1(1− θ)b−1θr(1− θ)x

=θa+r−1(1− θ)b+x−1

∝Beta(r + a, x+ b)

so a Beta distribution with parameters a+ r and b+ x.

(c) Conjugacy means that the prior and the posterior belongs to the same
class of distributions. That is the case here so the beta distribution
is the conjugate family for this particular formulation of the negative
binomial distribution.

(Continued on page 2.)
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(d) We have that

E[θ|x] =
a+ r

a+ b+ x+ r

=
x+ r

a+ b+ x

r

x+ r
+

a+ b

a+ b+ x+ rb

a

a+ b

showing the result with λ = x+r
a+b+x+r

.

This shows that the posterior expectation is a weighted average of
the prior expectation and the information obtained from data (here
measured through the maximum likelihood estimate). We also see that
the weight increase with x which corresponds to more information (seen
through the observed information).

(e) We have that the expected Fisher information, J(θ) is given by

J(θ) =E[
r

θ2
+

x− r
(1− θ)2

] =
r

θ2
+

r
θ
− r

(1− θ)2

=r[
1

θ2
+

1− θ
θ(1− θ)2

] = r[
1

θ2
+

1

θ(1− θ)
]

=
r

θ
[
1

θ
+

1

1− θ
] =

r

θ2(1− θ)
.

Jeffreys’ prior then becomes

p(θ) ∝ 1

θ
√

1− θ

The posterior in this case becomes

p(θ|x) ∝ 1

θ
√

1− θ
θr(1− θ)x−r

∝θr−1(1− θ)x−r−0.5

∝Beta(r, x− r + 0.5)

(f) For the Beta prior, we have

p(θ|x1, ..., xn) ∝p(θ)
n∏
i=1

p(xi|θ)

∝θa−1(1− θ)b−1θnr(1− θ)
∑n

i=1 xi

=θa+nr−1(1− θ)b+
∑n

i=1 xi−1

∝Beta(a+ nr, b+
n∑
i=1

xi)

(Continued on page 3.)
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For the Jeffreys’ prior, we obtain

p(θ|x1, ..., xn) ∝p(θ)
n∏
i=1

p(xi|θ)

∝θ−1(1− θ)−0.5θnr(1− θ)
∑n

i=1 xi

=θnr−1(1− θ)
∑n

i=1 xi−0.5

∝Beta(nr,
n∑
i=1

xi + 0.5)

They both depend on
∑n

i=1 xi due to that this is the sufficient statistic
for θ in this case.

(g) We have that the maximum likelihood estimate becomes

θ̂ML =
nr∑n

i=1 xi + nr
=

20

27
= 0.74

while the prior expectations for the Beta priors are all 0.5. The higher
the values of a, b, the more concentrated are the priors around 0.5 and
will therefore push the posteriors towards 0.5. For the Jeffreys’ prior,
the mean is more close to the maximum likelihood estimate.

Based on this the purple curve correspons to Jeffreys’ prior while the
black, red, green and blue correspond to a = 2, 3, 4, 5.

Problem 2

(a) Bootstrapping is considering the frequentist properties when repeating
experiments. In this case then some samples will not contain the
extreme x observation in which case the estimates will be much less
reliable.

The Bayesian approach, however, condition on the (lucky) setting
where we have got this extreme observation which do give much
information about the parameters. This then gives much less variability
in the prediction intervals.

Note however that the Bayesian approach depend much more on the
model assumption which might be questionable in the region where
there are no x values.

(b) Assume Pr(M1) = Pr(M2) = 0.5. Assume further that these are the

(Continued on page 4.)
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only two models under consideration. Then

Pr(M1|y) =
Pr(M1)p(y|M1)

Pr(M1)p(y|M1) + Pr(M2)p(y|M2)

=
p(y|M1)

p(y|M1) + p(y|M2)

=
exp(−23.357)

exp(−23.357) + exp(−24.026)
= 0.661

BF (M1,M2) =
p(y|M1)

p(y|M2)
= e−23.357+24.026 = 1.952

The Bayes factor and model probabilities give a slight preference for
model 1. On the other hand, elpd gives a slight preference to model
2. The textbook prefers elpd due to the less sensitivity to priors. In
this case both measures gives high uncertainty about which model to
prefer, so model averaging would perhaps be preferable here.

(c) Cross-validation might be very unstable here due to the one extreme
observation. Bridge sampling can also be somewhat problematic
due to that the importance weights might be extreme when the last
observation is left out. I would therefore be a bit sceptic to the results.
However, visual inspection of the results do give similar support as the
results shown.

(d) Predictive p-values are similar to classical p-values except that they
take the uncertainties in the parameters into account. If the points
are mainly on one side of the line, this indicate that there is some
discrepancy in the model.

In this case, there is no clear evidence of discrepance, at least not with
respect to what is checked here (which mainly is the most extreme
residual).


