
Exam STK 4021/9021 December 2015:

Notes, by Nils Lid Hjort

Exercise 1

(a) First, yi | θ is a binomial (1, θ), with mean θ and variance θ(1 − θ). Secondly, z =∑n
i=1 yi given θ is binomial (n, θ), hence with mean and variance nθ and nθ(1− θ).

(b) Now θ is uniform on (0, 1).

(i) Its mean and variance are 1
2 and 1

12 .

(ii) Then the marginal distribution of yi:

P (Yi = 1) =

∫ 1

0

P (Yi = 1 | θ)p(θ) dθ =

∫ 1

0

θ dθ = 1
2 .

Hence Yi marginally is binomial (1, 1
2 ), with mean and variance 1

2 and 1
4 .

(iii) We have P (Yi = 1, Yj = 1 | θ) = θ2, so

cov(Yi, Yj) = EYiYj − 1
4 = E θ2 − 1

4 = Var θ = 1
12 ,

with ensuing correlation 1
3 .

(iv) From rules of double expectation, E z = EE(z | θ) = Enθ = 1
2n, and

Var z = Enθ(1− θ) + Var (nθ) = n/6 + n2/12.

(c) The marginal distribution of data is

f(y1, . . . , yn) =

∫
θz(1− θ)n−z dθ =

z!(n− z)!

(n+ 1)!
,

with z =
∑n

i=1 yi.

(d) We have

P (M0 | data) =
1
2f0

1
2f0 +

1
2f1

and P (M1 | data) =
1
2f1

1
2f0 +

1
2f1

,

where

f0 =

∫
p(y1, . . . , y20 | θ)p(θ) dθ =

11! 9!

21!

and

f1 =

∫
p(y1, . . . , y10 | θA)p(y11, . . . , y20 | θB)p(θA)p(θB) dθA dθB =

7! 3!

11!

4! 6!

11!
.

I find

f0 =
1

3527160
and f1 =

1

1320

1

2310

leading to probabilities 0.464 and 0.536 for Model Zero and Model One.
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Exercise 2

(a) The posterior for θ given y is proportional to exp(−θ)θyθa−1 exp(−bθ), and hence a

Gamma (a+ y, b+1). The Bayes estimate under quadratic loss is the posterior mean,

θ̂ =
a+ y

b+ 1
= (1− w)θ0 + wy,

where θ0 = a/b is the prior mean and w = 1/(b+ 1).

(b) The risk function for some θ̃ estimator under quadratic loss is Eθ(θ̃− θ)2. For the ML

we have R(θ∗, θ) = θ. For the Bayes estimator we find

R(θ̂, θ) = w2θ + (1− w)2(θ − θ0)
2.

This is indeed smaller than θ when |θ − θ0| is small. The Bayes is in fact better than

the ML as long as

w2θ + (1− w)2(θ − θ0)
2 ≤ θ

or

(θ − θ0)
2 ≤ 1 + w

1− w
θ = (b+ 2)θ.

(c) One finds E y = a/b and Var y = θ0(1 + 1/b). So ȳ is a good estimator for θ0 = a/b,

and s2 estimates θ0(1 + 1/b). This means ȳ/s2 estimates b/(b+ 1), and we may solve

for b to find b̂ = ȳ/(s2− ȳ). In case the variance is smaller than ȳ (which may happen,

but typically with small probability), we may put a/b = θ0 = ȳ and b̂ = ∞.

(d) The marginal distribution of yi is

f(y) =

∫ ∞

0

exp(−θ)
θy

y!

ba

Γ(a)
θa−1 exp(−bθ) dθ

=
ba

Γ(a)

1

y!

Γ(a+ y)

(b+ 1)a+y
,

for y = 0, 1, 2, . . .. The log-likelihood function becomes

ℓn(a, b) =

n∑

i=1

{a log b− log Γ(a) + log Γ(a+ yi)− (a+ yi) log(b+ 1)},

and the marginal ML are the (â, b̂) maximising this expression. Taking the derivative

with respect to b and setting it to zero leads to the insight that ȳ = â/b̂.

(e) For estimating w = 1/(b+1) one may use moment estimates or ML, both agreeing that

ȳ = â/b̂, but with different schemes for determining the b. In any case the suggestion

is

θ̃i = (1− ŵ)ȳ + ŵyi,

for example

θ̃i =
ȳ

s2
ȳ +

(
1− ȳ

s2

)
yi.
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Using this ‘lending strength’ empirical Bayes method will give a risk function better

than for the ML method, for a wide range of (θ1, . . . , θn) in the parameter space,

those for which the spread is not too big. The ML might be better for cases where

the parameters have a big spread.

Exercise 3

(a) This is Bayes’ formula. The marginal distribution of y is p(y) =
∑10

k=1 πkfk(y).

(b) The expected loss, given data y, associated with the decision ĉ, is

E {L(c, ĉ) | y} = 1 · P (c 6= ĉ | y) = 1− P (c = ĉ | y).

Minimising this posterior expected loss is hence the same as finding the ĉ that makes

P (c = ĉ | y) the biggest. I classify y to come from the most probable class. Its risk

function is a function of the parameter c = 1, . . . , 10, and is equal to

r(c) = EcL(c, ĉ) = 1 · pmc(c) = 1− pcc(c),

which is the error rate or probability of misclassification pmc(c) at c, or one minus

the hit rate or probability of correct classification pcc(c) at c. The Bayes method

succeeds in minimising the overall error rate, or maximising the overall rate of correct

classification:

error rate =
10∑

k=1

πkpmc(k) = 1−
10∑

k=1

πkpcc(k).

(c) The posterior expected loss is still

E {L(c, ĉ) | y} = 1− P (c = ĉ | y)

if ĉ is among 1, . . . , 10, and is equal to k if ĉ is set equal to D. The Bayes solution is

to allocate y to the most probable class ĉ, as long as this probability P (c = ĉ | y) is

bigger than 1− k; if all class probabilities are smaller than 1− k, then use Doubt.

Exercise 4

(a) The likelihood for these data is 1/θn for y ≥ ymax. Here n = 10 and ymax = 6.931.

(b) With prior 1/θ, the posterior takes the form

p(θ | data) = c

θn+1
for θ ≥ ymax,

with c the appropriate integration constant. One finds that this corresponds to cu-

mulative posterior

Fn(θ) = 1− (ymax/θ)
n for θ ≥ ymax,

with posterior density pn(θ) = nynmax/θ
n+1 for this range of θ. The Bayes estimate is

the posterior median, which is found to be

θ̂ =
ymax

( 12 )
1/n

which here is equal to 1.072 ymax. The ML estimator is ymax, and the best unbiased

estimator is 1.1 ymax.
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The Project, Exercise 1

(a) It is positive and integrates to 1. Also, the cdf is 1 − exp(−θ
√
y), and the median

solves θ
√
µ = log 2, giving (log 2)2/θ2. The mean is found to be 2/θ2, by integration,

or by noting that x = θ
√
y is a unit exponential, so y = x2/θ2 etc.

(b) The log-likelihood is

ℓn(θ) =
n∑

i=1

(log θ − θy
1/2
i ),

and the ML is θ̂ = 1/Wn, with Wn = (1/n)
∑n

i=1 y
1/2
i . Via yi = x2

i /θ
2, for iid unit

exponentials, we have

θ̂ =
θ

x̄
= θ

2n∑n
i=1 2xi

= θ
2n

χ2
2n

,

from which the exact density etc. may be found. Also, J(θ) = 1/θ2, so

θ̂ ≈ N(θ, θ2/n) ≈ N(θ, θ̂2/n)

from curriculum.

(c) The posterior is proportional to θa−1 exp(−bθ)θn exp(−θnwn), and is hence a Gamma

(a+ n, b+ nwn).

(d) The marginal density for y becomes

f(y) =

∫ ∞

0

θ

2
√
y
exp(−θ

√
y)

ba

Γ(a)
θa−1 exp(−bθ) dθ =

ba

Γ(a)

1

2
√
y

Γ(a+ 1)

(b+
√
y)a+1

.

For the uniform case (a, b) = (1, 1),

f(y) =
1

2
√
y(1 +

√
y)2

og F (y) = 1− 1

1 +
√
y
=

√
y

1 +
√
y
.

(e) The cdf for the mean 2/θ2 is

P{2/θ2 ≤ x} = P{(2/x)1/2 ≤ θ} = 1−G((2/x)1/2, a, b).

We must choose (a, b) to have

1−G((2/0.20)2, a, b) = 0.10 og 1−G((2/2.00)2, a, b) = 0.90.

I find (a0, b0) = (5.315, 2.656).

(f) The ML is 0.856, the posterior mean is

θ̂B =
a0 + n

b0 +
∑n

i=1 y
1/2
i

= 1.038.
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(g) In the same graph, can display the Gamma with parameters (a0+nn, b0+
∑n

i=1 y
1/2
i ) =

(17.315, 16.673) and the normal approximation N(0.856, 0.8562/12). They are close,

but not very much so (but will become closer for higher n). There are slightly more

informative versions of ‘lazy Bayes’ that take the prior into account.

(h) The predictive density is as for the marginal density above, but with (a, b) replaced

by the updated (a′, b′) = (a0 + n, b0 +
∑n

i=1

√
yi). I simulate 106 values of θ from the

Gamma posterior, and for each of these I simulate ynew from the model density, which

is the same as using ynew = x2
new/θ

2, with xnew from the unit exponential. I read off

quantiles via quantile(ysim,c(0.1,0.5,0.9)) and find (0.010, 0.463, 5.623).

The Project, Exercise 2

(a) The posterior is proportional to

θa−1(1− θ)b−1θ(1− θ)y−1

and hence a Beta (a+ 1, b+ y − 1).

(b) For the uniform case (a, b) = (1, 1), the posterior is a Beta (2, y), and the marginal

distribution for y is

f(y) =

∫ 1

0

(1− θ)y−1θ dθ =
(y − 1)!

(y + 1)!
=

1

y(y + 1)
for y = 1, 2, 3, . . . .

Its mean is infinity, which also may be seen via E(y | θ) = 1/θ, which yields E y =

E1/θ = ∞.

(c) We have log f = log θ + (y − 1) log(1 − θ) with derivative u = 1/θ − (y − 1)/(1 − θ),

hence

J(θ) = Varθ u(Y, θ) =
1

θ2(1− θ)
.

The square-root is the Jeffreys prior, which may be seen as a Beta (0, 1
2 ). It is

improper, but yields a proper posterior as soon as there is one or more y.

(d) Risk functions are computed as

r(θ) = Eθ(θ̃ − θ)2 =
∑

y≥1

{θ̃(y)− θ}2(1− θ)y−1θ.

Doing this with 1/y and 2/(2 + y) gives nice risk functions r1(θ) and r2(θ), for the

ML and the Bayes. The Bayes is better if θ ≤ 0.836 (and partly much better); only

for θ > 0.836 is ML better.

(e) The posterior means are

θ̂i =
a+ 1

a+ b+ yi
for i = 1, . . . , n.
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(f) The marginal distribution for yi is

f(yi) =

∫
(1− θ)yi−1θp(θ | a, b) dθ = a

Γ(a+ b)

Γ(b)

Γ(b+ yi − 1)

Γ(a+ b+ yi)

for yi = 1, 2, 3, . . .. Can then form the marginal log-likelihood

ℓn(a, b) =

n∑

i=1

{log a+ log Γ(a+ b)− log Γ(b) + log Γ(b+ yi − 1)− log Γ(a+ b+ yi)}.

Numerical maximisation, using nlm and starting at e.g. (10, 10), gives ML estimates

(1.714, 6.355).

(g) MCMC for (a, b) can be implemented in the usual fashion. I have used normal pro-

posals, of the type anew ∼ N(aold,
1
2 sea) and bnew ∼ N(bold,

1
2 seb), with (sea, seb) =

(0.973, 5.113) the approximate standard errors from likelihood analysis. With a mil-

lion MCMC steps I have acceptance rate about 0.80, and also mean probability of

acceptance 0.80. The a is better estimated than b, the former having (3.836, 2.792)

as mean and standard deviation, the latter (59.725, 27.147). The correlation is 0.468.

A plot of a/(a + b) is also useful, the prior mean in the distribution of geometric

probabilities.

(h) With a bit of work I can find and display cbind(1:nn,yy,1/yy,eB,low,mid,up),

involving the full million of MCMC steps:

[1,] 1 1 1.0000 0.2992 0.0160 0.0705 0.2258

[2,] 2 1 1.0000 0.2992 0.0159 0.0704 0.2263

[3,] 3 2 0.5000 0.2695 0.0157 0.0691 0.2139

[4,] 4 2 0.5000 0.2695 0.0157 0.0690 0.2138

[5,] 5 2 0.5000 0.2695 0.0157 0.0691 0.2146

[6,] 6 2 0.5000 0.2695 0.0157 0.0691 0.2144

[7,] 7 2 0.5000 0.2695 0.0157 0.0691 0.2142

[8,] 8 3 0.3333 0.2452 0.0154 0.0678 0.2044

[9,] 9 3 0.3333 0.2452 0.0155 0.0678 0.2041

[10,] 10 3 0.3333 0.2452 0.0154 0.0678 0.2043

[11,] 11 3 0.3333 0.2452 0.0155 0.0678 0.2043

[12,] 12 3 0.3333 0.2452 0.0154 0.0678 0.2042

[13,] 13 5 0.2000 0.2076 0.0149 0.0654 0.1885

[14,] 14 6 0.1667 0.1929 0.0146 0.0642 0.1817

[15,] 15 6 0.1667 0.1929 0.0146 0.0643 0.1819

[16,] 16 14 0.0714 0.1230 0.0128 0.0564 0.1485

[17,] 17 15 0.0667 0.1176 0.0126 0.0555 0.1454

[18,] 18 15 0.0667 0.1176 0.0126 0.0555 0.1453

[19,] 19 20 0.0500 0.0967 0.0118 0.0517 0.1332

[20,] 20 75 0.0133 0.0327 0.0065 0.0298 0.0766
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The Project, Exercise 3

(a) The posterior for τ becomes

π(τ | data) ∝ fL(y1) · · · fL(yτ )fR(yτ+1) · · · fR(yn).

The right hand side can be computed for each τ (typically using the logarithm and

summing) and then normalised.

(b) I simulate τ = 66 data points from N(1.1, 1) and 34 data points from N(2.2, 1). Then

I compute

Q(τ) = − 1
2

∑

i≤τ

(yi − ξL)
2 − 1

2

∑

i≥τ+1

(yi − ξR)
2

for each τ . The posterior for τ is then proportional to exp(Q(τ)) and can be displayed.

It will have most of its mass close to the true τ .

(c) The log-likelihood function for the Poisson case is

ℓ(τ, θL, θR) =
∑

i≤τ

(−θL + yi log θL) +
∑

i≥τ+1

(−θR + yi log θR)

= −τ{θL + ȳL log θL} − (n− τ){θR + ȳR log θR},
in terms of left and right averages ȳL and ȳR. This is for given τ maximised by setting

θL and θR equal to ȳL and ȳR. Hence it remains to maximise

ℓ(τ, θ̂L(τ), θ̂R(τ)) = −τ{θ̂L(τ) + θ̂L(τ) log θ̂L(τ)} − (n− τ){θ̂R(τ) + θ̂R(τ) log θ̂R(τ)}

over the possible values of τ . I find τ̂ = 22. Then, given this change-point value, I

find ML for θL and θR in the usual fashion, based on 22 Poisson data to the left and

29 Poisson data to the right. Values are 3.045 and 0.896.

(d) The full distribution for (τ, θL, θR, y1, . . . , yn) can be written

π(τ)p(θL)p(θR)
∏

i≤τ

exp(−θL)θ
yi

L /yi!
∏

i≥τ+1

exp(−θR)θ
yi

R /yi!.,

with π(τ) the prior for τ . But this may be rewritten as proportional to

π(τ)θa−1
L exp(−bθL)θ

τȳl(τ)
L exp(−τθ)θa−1

R exp(−bθR)θ
(n−τ)ȳR(τ)
R exp(−(n− τ)θR)

π(τ)θ
a+τȳl(τ)−1
L exp{−(b+ τ)θL}θa+(n−τ)ȳR(τ)−1

R exp{−(b+ n− τ)θR(τ)}.

Integrating over (θL, θR) gives

π(τ | data) ∝ π(τ)
Γ(a+ τ ȳL(τ))

(b+ τ)a+τȳL(τ)

Γ(a+ (n− τ)ȳR(τ))

(b+ n− τ)a+(n−τ)ȳR

which may be computed and displayed. Also, given τ , the posteriors for θL and θR
are independent, with

θL | data, τ ∼ Gam(a+ τ ȳL(τ), b+ τ),

θR | data, τ ∼ Gam(a+ (n− τ)ȳR(τ), b+ n− τ).
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(e) To simulate from the posterior of (τ, θL, θR) is therefore easy: we simulate τ from

π(τ | data) using sample, and then conditional on such draws we simulate θL and θR

from Gamma distributions (involving ȳL and ȳR computed with different τ each time).

Doing this a million times, I find (17, 21, 27) for the 0.05, 0.50, 0.95 posterior quantiles

for τ . For γ = θR/θL I find (0.212, 0.314, 0.453).
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