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Exercise 1

We start with some Bayesian questions related to the binomial distribution, which

is fitting in that this is also where the Presbyterian minister Thomas Bayes (1702–1761)

arguably started what is now known as Bayesian statistics, with a paper published two

years after his death. Below you are free to utilise the formula

∫
1

0

xa(1− x)b dx =
a! b!

(a+ b+ 1)!
,

valid for nonnegative integers a, b.

(a) Assume that y1, . . . , yn is a sequence of 0–1 variables that for given probability θ are

independent with the same probability Pr(yi = 1 | θ) = θ. Write down the conditional

mean and variance of yi as well as for z =
∑n

i=1
yi, the observed number of events in

n trials.

(b) The event probability θ is most typically an unknown quantity, however, and we shall

now assume as Bayes actually did that θ has a uniform prior density on [0, 1].

(i) Find the prior mean and prior variance of θ.

(ii) Find the mean and variance of yi in its marginal distribution.

(iii) Find the covariance and correlation between yi and yj , where i 6= j.

(iv) Find finally the marginal mean and marginal variance of z.

(c) Show that the marginal distribution of the full vector y = (y1, . . . , yn) is

fn(y1, . . . , yn) =
z! (n− z)!

(n+ 1)!
with z =

n∑

i=1

yi.
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– Was the Norwegian ‘no thanks’, regarding the prospects of having the Olympics in Oslo

for 2022, an unfortunate & regrettable decision, or not? I’m curious as to whether

men and women are reacting differently to this question. I therefore impulsively

interview ten suitably random-looking men along with ten equally random-looking

women on Karl Johans gate (explaining my question carefully and patiently, so that

we may regard their ‘yes’ or ‘no’ answers as responses to a well-defined criterion).

Seven among the men, and four among the women, say ‘yes, it was unfortunate &

regrettable’.

(d) The question is now whether Model Zero or Model One has the higher probability,

in view of the data, where Model Zero takes the same ‘yes’-probability θ for both

groups and Model One takes ‘yes’-probability θA for the men and θB for the women.

Compute the required posterior probabilities for Model Zero and Model One, under

the additional assumptions (i) that the two models are a priori equally likely and (ii)

that θ is taken uniform in Model Zero whereas θA and θB are taken independent and

uniform in Model One.

Exercise 2

Statisticians often need to estimate several different but perhaps similar quantities.

There is then a choice of handling each quantity separately or to attempt to push the quan-

tities in question under the same grander umbrella, thereby hopefully ‘lending statistical

strength’ across situations. This exercise makes a brief excursion into one such situation.

(a) Suppose y given θ is a Poisson with parameter θ; thus the standard estimator of θ

that does not take anything extra into account is θ∗ = y. Assume however that θ

has a Gamma prior with parameters (a, b), i.e. with density {ba/Γ(a)}θa−1e−bθ for θ

positive. Its mean and standard deviation are a/b and
√
a/b (which you do not need

to show here). Show that the Bayes estimate under quadratic loss may be expressed

as

θ̂ = θ̂(a, b) =
a+ y

b+ 1
.

(b) Calculate the risk functions R(θ∗, θ) and R(θ̂, θ) for the two estimators (under quad-

ratic loss), and demonstrate that the Bayes estimator has smaller risk in a certain

neighbourhood around the prior mean.

(c) Assume now that the statistician actually needs to estimate a collection of 50 such

probabilities θ1, . . . , θ50, from sets of raw data yi ∼ Pois(θi) that are conditionally

independent given the θi. When these rate parameters are not widely dissimilar it

may make sense to model them as having come from the same distribution, which

we here take to be the Gamma (a, b). Use formulae for the mean and variance of

yi to give a recipe for finding reasonable estimates of (a, b) from the data, based

on overall empirical mean and empirical standard deviation ȳ = (1/50)
∑

50

i=1
yi and

s2 = (1/49)
∑

50

i=1
(yi − ȳ)2.
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(d) Find an expression for the marginal distribution of yi, in terms of the hyperparam-

eters (a, b). Give also an expression for the marginal log-likelihood function for the

observations, under the above circumstances, and show that the marginal maximum

likelihood estimates (â, b̂) must satisfy ȳ = â/b̂.

(e) Conclude by giving such a ‘combining strength’ strategy for estimating the ensemble

of θi parameters. Comment briefly on how you would expect this strategy to work,

compared e.g. to the standard raw data method that merely uses θ∗i = yi.

Exercise 3

Statistical classification involves the task of allocating objects to the right categories.

There are several versions of such problems, as expected, and the following is one such type

of problem formulation. Suppose objects a priori belong to one of ten classes 1, . . . , 10, and

that a certain measurement y (typically a vector with several components) is extracted

for each object. Assume further that the density of y, given that it comes from an object

of type j, is equal to fj(y) (assumed in this little exercise to be known, i.e. with no

unknown parameters). Finally assume that the classes have prior probabilities π1, . . . , π10

(the frequencies with which they will occur in the long run, if we continue to observe many

objects under a given set of circumstances).

(a) Consider the random pair (c, y), where c is the class label and y is the measurement

extracted from the object. Show that

Pr(c = j | y) = πjfj(y)∑
10

k=1
πkfk(y)

for j = 1, . . . , 10.

What is the marginal distribution of y?

(b) The challenge is to attempt to allocate a given object, for which we extract mea-

surement y, to its correct class c. Let ĉ = ĉ(y) be such a classification, with ĉ(y) ∈
{1, . . . , 10}. We work with the loss function

L(c, ĉ) = I{ĉ 6= c} =
{
1 if ĉ 6= c,
0 if ĉ = c.

Comment briefly on this type of loss function. For a given method or recipe ĉ = ĉ(y),

give a formula and an interpretation of its risk function.

(c) For the given object under study we view c as an unknown parameter, for which the

prior distribution is defined via π1, . . . , π10 defined above. Explain how the Bayes rule

works for this classification problem. Explain also precisely which optimality property

this Bayes strategy has.
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(d) Sometimes the statistician would like to reserve judgement for some of the objects

that are to be classified. Introduce therefore the extra category D, for ‘doubt’, so

that the action space after having observed the y for a given object under study is

{1, . . . , 10, D}. Assume also that the revised loss function is as above, modulo the

modification that the loss is equal to some threshold value k if the decision made is

D; that is,

L(c, ĉ) =

{
0 if ĉ = c,
1 if ĉ 6= c and ĉ ∈ {1, . . . , 10},
k if ĉ = D.

With the same prior probabilities as above, characterise the revised Bayes strategy.

Exercise 4

Consider the measurements

0.257 4.442 6.889 1.212 6.931 5.049 5.375 3.866 2.836 2.763

These are taken to be an i.i.d. sample from a uniform distribution on [0, θ], with θ an

unknown parameter.

(a) Write down the likelihood function for these data, under the assumed uniform model.

What is the maximum likelihood estimate?

(b) With the prior 1/θ for the unknown parameter, give an explicit formula for the poste-

rior distribution, and compute the Bayes estimate under absolute loss (i.e. L(θ, θ̂) =

|θ̂ − θ|).
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