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This note discusses sequential Monte Carlo methods in somewhat more
details than what is covered in the textbook (Givens and Hoeting, 2012).
We will focus on inference with state space models and online applications
where computation is performed/updated recursively as new observations
arrive. Doucet et al. (2001) is a main reference in sequential Monte Carlo
methods. More recent reviews are Doucet and Johansen (2009) and Creal
(2012).

1 State space models

Consider the state space model

X1 ∼p(x1; θ) (1a)
Xt ∼p(xt|xt−1; θ) State process (1b)
Yt ∼p(yt|xt; θ) Observation process (1c)

where {yt} are observed while {xt} are hidden. Note that we here deviate
somewhat from the notation in the book in that we use p(·) generically for
distributions. Further, both xt and yt (as well as θ) may be vectors. We will
however save a boldface notation to sequences of variables x1:t = (x1, ..., xt).

Our aim will be inference on {xt} and/or θ. The basic sequential rela-
tionships are then

p(xt|y1:t−1; θ) =
∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1; θ)dxt−1; (2)

p(xt|y1:t; θ) =p(xt|y1:t−1; θ)p(yt|xt; θ)
p(yt|y1:t−1; θ) . (3)
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2 Proper samples

We say that a weighted random pair (X,W ) is properly weighted with respect
to π if for any (square integrable) function h

E[Wh(X)] = c · Eπ[h(X)]

for some constant c. A weighted random sample {(Xi,W i), i = 1, ..., N} is
properly weighted with respect to π if each (Xi,Wi) are properly weighted.

A consequence of this is that if {(Xi,W i), i = 1, ..., N} are iid random
pairs, then

µ̂ = 1
N

N∑
i=1

W ih(Xi) (4)

is a consistent estimator of µ = Eπ[h(X)] (provided that Var[Wh(X)] <
∞ where this variance is with respect to the distribution that (W,X) is
generated from).

3 Sequential Monte Carlo for known θ

In this section we will, for simplicity, skip θ in the notation. Assume we
want to simulate from p(x1:t|y1:t) where we can write

p(x1:t|y1:t) ∝p(x1:t,y1:t)

=p(x1)p(y1|x1)
t∏

s=2
p(xs|xs−1)p(ys|xs).

Assume now a proposal distribution

q(xt) = q(x1)
t∏

s=2
q(xs|xs−1)

which allows for sequential simulation. Then, using the importance sampling
idea, we obtain importance weights

wt(x1:t) ∝
p(x1)p(y1|x1)

∏t
s=2 p(xs|xs−1)p(ys|xs)

q(x1)
∏t
s=2 q(xs|xs−1)

=p(x1)p(y1|x1)
∏t−1
s=2 p(xs|xs−1)p(ys|xs)

q(x1)
∏t−1
s=2 q(xs|xs−1)

p(xt|xt−1)p(yt|xt)
q(xt|xt−1)

∝wt−1(x1:t−1)p(xt|xt−1)p(yt|xt)
q(xt|xt−1)
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showing that also the importance weights can be easily updated sequentially.
The missing proportionality constants makes no problem here since they will
cancel out in the Monte Carlo estimates (4). In practice we usually normalize
the weights to sum to one.

A particular simple choice of proposal distribution is

q(xt|xt−1) =p(xt|xt−1)

in which case the updating equation for the importance weights reduces to

wt(x1:t) ∝wt−1(x1:t−1)p(yt|xt).

This is called the Bootstrap filter (Gordon et al., 1993).
An alternative choice is

q(xt|xt−1) = p(xt|xt−1, yt) = p(xt|xt−1)p(yt|xt)
p(yt|xt−1) .

In that case, the updating scheme becomes

wt(x1:t) = wt−1p(yt|xt−1)

This choice can be seen as an optimal one (in that the variance of weights are
minimized), but require both the possibility of simulating from p(xt|xt−1, yt)
and evaluating p(yt|xt−1). How easy this is depends on the application.
Pitt and Shephard (1999), through their auxiliary particle filter algorithm,
propose the use of approximations of both these terms in order to obtain
practical algorithms.

3.1 Weight degeneracy and the need for resampling

Based on the general rule:

var[Y ] = E[var[Y |Z]] + var[E[Y |Z]] ≥ var[E[Y |Z]]

we obtain, by choosing Y = wt, Z = X1:t−1 (note that wt−1 is a deterministic
function of x1:t−1) that

Eq[wt|X1:t−1] =wt−1Eq[p(Xt|Xt−1)
q(Xt|Xt−1) |X1:t−1]

=wt−1 · 1 = wt−1

implying that

var[wt] ≥var[wt−1]
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which indicates that the variance will increase at each time-step. The prac-
tical consequence of this is that only a few samples will dominate the others
when time increases and thereby that the variability of the Monte Carlo
estimate will increase. In order to measure the quality of Monte Carlo esti-
mates based on weighted samples one typically use the effective sample size.
Assume wi = w(Xi), i = 1, ..., N are normalized weights. We then define the
effective sample size by

N̂eff = 1∑n
i=1w

2
i

There are some theoretical arguments behind this definition (see the text-
book), but one motivation is that it gives reasonable measures in specific
cases, e.g

N̂eff =
{
N if wi = 1

N for all i;
N − z if wi = 0, i ≤ z, wi = 1

N−z , i > z.

Problems occur when the effective sample size becomes too small. In that
case, the variability in the associated Monte Carlo estimate will be large. A
practical solution in that case is to perform resampling.

The simplest option of resampling is the following:

• Resample {x̃1
t , ..., x̃

N
t } from {x1

t , ..., x
N
t } with probabilities proportional

to wit.

• Put weights on the resampled values equal to w̃it = N−1.

(In the following we will be a bit sloppy in the notation in that we will use
{x1

t , ..., x
N
t } also for the resampled sample.) Note that for the resampling

scheme above, the number of repeats of variable xit, N i
t say, follows the

Binomial(n,wit) distribution and thereby that E[N i
t w̃

i
t] = wit.

Assuming {x1
t , ..., x

N
t } is a properly weighted sample with respec to p(x1:t|y1:t),

one can show that a sufficient criterion for the resampled sample to be prop-
erly weighted as well is that E[N i

t w̃
i
t] = wit for all i. There are many other

resampling schemes that have this property. The optimal one (with respect
to minimizing the extra variability introduced) is the following:

• For i = 1, ..., N , put (bac is the largest integer smaller than a)

Ñ i
t = bNwitc (Some will be zero)

• Let νit = wit − Ñ i
t/N
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• Define K = N −
∑N
i=1 Ñ

i
t (remaining particles that have not been

allocated).

• Sample (D1
t , ..., D

N
t ) from the multinomial distribution with probabil-

ities proportional to (ν1, ..., νnt ).

• Put N i
t = Ñ i

t +Di
t

• Make N i
t replicates of xit, put all weights equal to 1/N .

Remarks Resampling will introduce extra random noise at the current
time-point, but can reduce noise at later time points. Introducing resampling
can be beneficial when only the marginal p(xt|y1:t) is of interest (that is only
the last point in the state process). In such cases it is possible (under some
regularity assumptions) to show that the Monte Carlo errors are uniformly
bounded in time (that it is does not increase with t). When considering
p(x1:t|y1:t), resampling will result in that the values of xs for s small will
degenerate to only a few (in the end a single) unique points.

4 Sequential Monte Carlo for simultaneous param-
eter estimation

Consider now the case where θ is unknown. There are two possible ap-
proaches in this case. We will briefly discuss maximum likelihood estima-
tion, while go more deeply into the Bayesian approach which turns out to be
somewhat simpler in this setting. For a recent review on such approaches,
see Kantas et al. (2015).

4.1 Online maximum likelihood estimation

In this case, one is interested in maximizing

Lt(θ) = p(y1:t|θ) =
∫

xt

p(y1:t|x1:t; θ)p(x1:t|θ)dxt.

A main problem in this case is to calculate the likelihood function (and
possibly the score function in order to do optimization). The main approach
in this setting is to use that

p(y1:t|θ) =p(y1|θ)
t∏

s=1
p(ys|y1:s−1; θ)

5



and then utilize that

p(ys|y1:s−1) =
∫
xs

p(xs|y1:s−1)p(ys|xs; θ)dxs ≈
N∑
i=1

wit−1p(ys|xis; θ)

where now xis is drawn from p(xs|xis−1) (the proposal in the Bootstrap filter).
Alternatives are possible if xis is drawn from other proposal distributions.

In Poyiadjis et al. (2011) algorithms for calculating the score function and
information (matrix) recursively is proposed making it possible for online
maximum likelihood estimation.

4.2 Bayesian online parameter estimation

An alternative approach to maximum likelihood estimation is the Bayesian
approach. In that case a prior p(θ), describing our prior knowledge about
θ, is introduced into model (1). Our aim in this case can then be online
inference on p(xt, θ|y1:t). One simple option in this case is to assume at time
t − 1 the existence of a properly weighted sample {(xit−1, θ

i, wit−1)} with
respect to p(xt−1, θ|y1:t−1). Then, by using that

p(xt, θ|y1:t−1) =
∫
xt−1

p(xt|xt−1, θ)p(xt−1, θ|y1:t−1)dxt−1

≈
N∑
i=1

wit−1p(xt|xit−1, θ
i)δθ(θi)

and

p(xt, θ|y1:t) ≈c ·
N∑
i=1

wit−1p(xt|xit−1, θ
i)δθ(θi)p(yt|xt, θi)

we can obtain updated samples {(θi, xit, wit)} by simulating xit ∼ p(xt|xit−1, θ
i)

and update the weights by wit ∝ wit−1p(yt|xit, θi) (where the proportionality
constant can be obtained by using normalized weights). An important fea-
ture of this approach is however that the sample {θi} is not changed over
time. If resampling is introduced into the algorithm, this will lead to degen-
eracy of the unique values of θ, with similar problems as for samples of xs
for s small. Alternative approaches are therefore needed.
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4.2.1 The Liu-West approach

One approach considered by Liu and West (2001) is to assume θ is (slowly)
changing with time, introducing a model

θt = θt−1 + ζt, ζt ∼ N(0, q)

and then rather focus on p(xt, θt|y1:t). In this case, assuming a weighted
sample {(xit−1, θ

i
t−1, w

i
t−1)} is available at time t− 1, we can use that

p(xt, θt|y1:t−1) =
∫
xt−1

p(xt|xt−1, θt)p(θt|θt−1)p(xt−1, θt−1|y1:t−1)dxt−1dθt−1

≈
N∑
i=1

wit−1p(xt|xit−1, θt)p(θt|θit−1)

and

p(xt, θt|y1:t) ≈c ·
N∑
i=1

wit−1p(xt|xit−1, θt)p(θt|θit−1)p(yt|xt, θt).

We can obtain updated samples {(θit, xit, wit)} by simulating θit ∼ p(θt|θit−1),
xit ∼ p(xt|xit−1, θ

i
t) and update the weights by wit ∝ wit−1p(yt|xit, θit). Since

new values {θit} are generated at each time point, the degeneracy problem
will be reduced. A main problem is however that in this case we introduce
extra variability in θt. The practical consequence of this is that estimation
of θt is mainly based on the most recent observations, giving some efficiency
loss.

4.2.2 The Fearnhead-Storvik approach

Consider now a more specific model where we assume the state process
follows the linear Gaussian model

xt = axt−1 + εt, εt ∼ N(0, σ2) (5)

in addition to that x1 ∼ N(0, σ2). The distribution p(yt|xt) can be arbitrary.
For simplicity, assume also σ2 is known while θ = a needs to be estimated.
We assume a prior

a ∼ N(µa, σ2
a).

It can then be easily shown that

p(a|x1:t) =N(µa|t, σ2
a|t)
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where

µa|t =σ2
a

∑t
s=2 xsxs−1 + σ2µa

σ2
a

∑t
s=2 x

2
s−1 + σ2 ;

σ2
a|t = σ2σ2

a

σ2
a

∑t
s=2 x

2
s−1 + σ2 .

A main point here is that given x1:t, the distribution of a (and simulation
from this distribution) is easily obtained. Note further that p(a|x1:t) only
depend on St,1 =

∑t
s=2 xsxs−1 and St,2 =

∑t
s=2 x

2
s−1 which both can be

recursively updated through

St,1 = St−1,1 + xtxt−1, St,2 = St−1,2 + x2
t−1.

Model (5) is a special case of a class of models where the posterior distri-
bution for the parameters involved only depends on a low-dimensional set
of sufficient statistics that can be recursively updated. The approach by
Fearnhead (2002) and Storvik (2002) utilizes this structure to construct a
sequential Monte Carlo method that focus on simulating the sufficient statis-
tics instead of the parameters. This approach, which will be described below,
is sometimes (a bit unfair) called the Storvik filter.

Assume now all parameters are involved in the state process (so p(yt|xt)
do not involve any unknown parameters). Define St to be the sufficient
statistics for θ given x1:t (which might be a vector) with the property that
St = h(St−1, xt−1, xt) for some function h(·). The idea then is to per-
form simulation on p(xt, St|y1:t) instead of p(xt, θ|y1:t). Assume a sample
{(xit−1, S

i
t−1, w

i
t−1), i = 1, ..., N} which is properly weighted with respect to

p(xt−1, St−1|y1:t−1) is available at time t − 1. Then, we can use similar
recursions as before:

p(xt, St|y1:t−1) =
∫
xt−1

p(xt, St|xt−1, St−1)p(xt−1, St−1|y1:t−1)dxt−1dSt−1

≈
N∑
i=1

wit−1p(xt, St|xit−1, S
i
t−1)

and

p(xt, St|y1:t) ≈c ·
N∑
i=1

wit−1p(xt, St|xit−1, S
i
t−1)p(yt|xt).

Note that simulation from p(xt, St|xit−1, S
i
t−1) can be performed through the

following steps

8



1. Simulate θi ∼ p(θ|xit−1, S
i
t−1) = p(θ|Sit−1).

2. Simulate xit ∼ p(xt|xit−1, θ
i).

3. Put Sit = h(Sit−1, x
i
t−1, x

i
t).

This then gives the following algorithm

Algorithm 1 SMC with parameter updating
1: Simulate θi ∼ p(θ) for i = 1, ..., N . . Initialization
2: Simulate xi1 ∼ p(x1|θi) for i = 1, ..., N .
3: Put weights wi1 = p(y1|xi1, θi).
4: Put Si1 = 0 for i = 1, ..., N .
5: for t = 2, 3, ... do . Sequential Monte Carlo
6: Simulate θi ∼ p(θ|Sit−1) for i = 1, ..., N .
7: Simulate xit ∼ p(xt|xit−1, θ

i) for i = 1, ..., N .
8: Put weights wit = wit−1p(yt|xit, θi).
9: Put Sit = h(Sit−1, x

i
t−1, x

i
t).

10: if N̂eff is small then . Resampling
11: Resample (xit, Sit) with probabilities proportional to wit.
12: Put wit = 1/N .
13: end if
14: end for

Note that the simulated values of θ are not used in the following time-
steps, so they are discarded. This makes it possible for the parameter values
to be changed at each iteration since the sufficient statistics will have the
possibility for changing. However, at time t, (θi, wit−1) can be seen as a
properly weighted sample with respect to p(θ|y1:t−1), making inference about
θ possible as well.

Even though this algorithm solves some of the problems that the alterna-
tive algorithm have, it has been pointed out (e.g. Andrieu et al., 2005) that
also this approach will, for large t suffer with respect to degeneracy. The
reason for this is that the sufficient statistic St depend on the whole path
x1:t where the first components will have very few unique values after several
rounds of resampling. Different approaches for improving on this has been
suggested (e.g. Olsson et al., 2008; Carvalho et al., 2010). Still, however, a
completely satisfactory solution is lacking!
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