
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK4051 –– Computational statistics

Day of examination: Thursday November 30 2017.

Examination hours: 09.00 – 13.00.

This problem set consists of 5 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some distributions that will be used:

Poisson(z;λ) =
zλe−λz

z!
Poisson

φ(z;µ, σ) =
1√
2πσ

e−
1

2σ2 (x−µ)2 Gaussian

Problem 1

Assume a mixture model given by

Y |C = k ∼Poisson(y;λk)

Pr[C = k] =πk

where k = 1, ..., K. We will consider methods for finding the maximum
likelihood estimates for θ = (π,λ) based on independent observations
y = (y1, ..., yn) where π = (π1, ..., πK) and λ = (λ1, ..., λK).
The plot below shows a histogram of n = 1000 observations of Y simulated
from the distribution above with K = 4.
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(Continued on page 2.)
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(a) Derive the likelihood function for θ and show that the log-likelihood
function is equal to

l(θ) = Const +
n∑
i=1

log[
K∑
k=1

πkλ
yi
k e
−λk ]

where Const is a constant not depending on θ

(b) Direct optimization based on the Nelder-Mead algorithm and a quasi-
Newton algorithm with 10 random initial values of θ gave the following
best values of l:

Nelder-Mead -2753.68 -2764.63 -2763.10 -2788.71 -2768.36
-2755.98 -2753.41 -2765.32 -2758.40 -2758.09

Quasi-Newton -2753.27 -3274.28 -3274.28 -3274.28 -2753.24
-2753.40 -2753.24 -3274.28 -2753.55 -2753.24

Describe briefly the main concepts behind these methods.

Discuss why it is reasonable to run the optimization algorithms with
different starting points.

Based on the results above, which method would you prefer?

(c) An alternative to direct optimization is the EM-algorithm. Describe
briefly the main idea behind the EM-algorithm and in particular what
the Q(θ|θ(t)) function is.

Why is the method suited for this particular problem?

(d) Derive the complete likelihood in this case and show that

Q(θ|θ(t)) =
n∑
i=1

K∑
k=1

Pr(Ci = k|y,θ(t))[log(πk) + yi log(λk)− λk]

(e) Show that the EM algorithm corresponds to the following updating
equations for π:

π
(t+1)
k =

1

n

n∑
i=1

Pr(Ci = k|y,θ(t))

where you should properly describe Pr(Ci = k|y,θ(t)). Derive similar
equations for λ.

(f) Running the EM algorithm with the same 10 random initial values of
θ as above all gave the same optimal value of l, equal to −2753.46.
Below is a plot of the values of l(θ(t)) as a function of t for one of these
runs.

(Continued on page 3.)
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Discuss this behaviour related to the general properties of the EM-
algorithm.

The following estimates were obtained:

k 1 2 3 4
π̂k 0.20 0.17 0.30 0.32

λ̂k 0.99 4.01 6.98 10.05

Describe briefly possible approaches for obtaining uncertainty measures
for the estimates.

Problem 2

Consider the Metropolis-Hastings algorithm where the transition densities
P (y|x) are defined through:

• Sample a candidate value X∗ from a proposal distribution g(·|x).

• Compute the Metropolis-Hastings ratio

R(x,X∗) =
f(X∗)g(x|X∗)
f(x)g(X∗|x)

• Put

Y =

{
X∗ with probability min{1, R(x,X∗)};
x otherwise.

An essential requirement for a Markov chain to converge to a stationary
distribution π(x) is that

π(y) =

∫
x

π(x)P (y|x)dx. (*)

(Continued on page 4.)
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(a) Show that a sufficient requirement for (*) is the detailed balance
criterion

π(y)P (x|y) = π(x)P (y|x). (1)

(b) Show that the Metropolis-Hastings algorithm satisfies the detailed
balance criterion.

What other criteria are needed in order for the Markov chain to
converge in distribution to π(x)?

Assume now you want to use the Metropolis-Hastings algorithm to simulate
from a one-dimensional distribution given by

π(x) ∝ sin2(x) · sin2(2x) · φ(x)

where φ(x) is the density for the standard Gaussian distribution. We will
consider two different proposal distributions:

g1(x
∗|x) =N(0, σ2

1);

g2(x
∗|x) =N(x, σ2

2).

These two proposal distributions were run with σ1 = 3.5 and σ2 = 2.5. A
total of 11000 iterations were run where the first 1000 were discarded. The
plots below shows traceplots (including the first 1000 iterations), estimated
autocorrelation functions and histograms for the two proposal distributions.
The acceptance rates for the two proposal distributions were 0.24 and 0.28,
respectively.

Trace plot - g1 proposal
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Trace plot - g2 proposal
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(c) For each of the two proposal distributions, derive formulas for the
Metropolis-Hastings acceptance probabilities.

What type of Metropolis-Hastings algorithms do the g1 and g2 proposal
distributions belong to?

Are the acceptance rates satisfactory for the two proposal distributions?
If not, how would you recommend to change the proposal distributions?

(Continued on page 5.)
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(d) Why would one discard the values obtained from the first iterations?
Describe a general method for specifying the number of iterations to
discard.

(e) For the two proposal distributions, the quantity
∑∞

k=0 ρ(k), with ρ(k) =
cor[(xt)2, (xt+k)2] was estimated to be 3.36 and 3.73, respectively, for
the g1 and g2 proposal distributions. How can these numbers be used
to compare the two versions of the Metropolis-Hasting algorithm if
estimation of E[x2] is of interest?

An alternative to the use of the Metropolis-Hastings algorithm in this case
is the rejection sampling method. Assume g1(x) again is used as proposal
distribution.

(f) Does this proposal distribution meet the requirements needed for
constructing a proper rejection sampling algorithm?

(g) N = 3000 values of x were generated by this algorithm, giving a mean
number of proposals equal to 16.9.

In order to estimate E[x2], would you prefer to use one of the
Metropolis-Hastings algorithms or the rejection sampling algorithm.
Justify your answer.


