
Compulsory for STK4051 - Computational statistics

Spring 2019

Part 1 (of 2)

This is the first part of the compulsory exercise for STK4051/9051, spring semester
2019. The second part of the compulsory exercise will be made available in the end of
Mars. The deadline for the complete compulsory exercise (including part 2) is April 30.
This must be delivered in the Devilry system (devilry.ifi.uio.no).

It is possible to deliver the first part earlier in which case feedback also will be given
earlier. For this part, you should deliver the exercise in paper to the lecturer!

Reports may be written in Norwegian or English, and should preferably be text-
processed (LaTeX, Word). Give your name and ”student number” on the first page. Write
concisely. Relevant figures need to be included in the report. Copies of relevant parts of
machine programs used (in R, or matlab, or similar) are also to be included, perhaps as
an appendix to the report.

This first part contains five exercises and comprises four pages (with an extra fifth page,
see below). Some R-code is available from the course web-page. You are free to use other
software, but would then need to translate or write your own code for that part included
in the R-script.

1

devilry.ifi.uio.no


Exercise 1 (Simulating data). We will in this exercise use simulated data. The model we
will consider is

Xt|Ct = k ∼N(µk, σ
2
k)

Pr(Ct = `|Ct−1 = k) =pk`, k, ` = 1, ..., K
Pr(C1 = k) =1/K

were we will refer to t as time in the following. We will further define

θ = {(πk, µk, σ
2
k), k = 1, ..., K, pk,`, k, ` = 1, ..., K}.

Data can be generated through the script HMM sim.R that is available on the course web-
page.

(a). Run the simulation script but change the seed to your student number!
Plot {xt} as a function of t. Do you see a clear pattern in the change of underlying
states?

(b). Calculate the probability Pr(Ct = k|Xt), that is the class probability using only the
current observation (based on the true parameter values).
Perform a ”classification” for each t by using some appropriate rule based on Pr(Ct =
k|Xt) and compare this with the true classes {Ct}.
Comment on the results.

Exercise 2 (Discrete optimization). We will continue to use the data simulated from Exer-
cise 1. We will assume the model parameters θ are known.

Our interest here will be to optimize p(C|x;θ) where C = (C1, ..., Cn) and x =
(x1, ..., xn).

(a). Show that

p(C|x;θ) ∝ Pr(C1)fC1(x1)
n∏

i=2
pci−1,ci

fCi
(xi)

where fk(xi) is the density for xi|Ci = k. Discuss why it may be better to consider
p(C|x;θ) on a log-scale.

(b). Implement a greedy (local search) algorithm for optimizing p(C|x;θ). Specify how
you choose initial values. Calculate p(C|x;θ) (up to the proportionality constant)
based on your result. Make a plot of x and C as functions of time (perhaps zoomed
in on a smaller time-frame) and discuss the results.

(c). Implement simulated annealing for optmization of p(C|x;θ). Specify how you choose
the initial temperature and the temperature schedule. Calculate p(C|x;θ) based on
your result. Make a plot of x and C as functions of time (perhaps zoomed in on a
smaller time-frame) and discuss the results.
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(d). For this model it is actually possible to design an algorithm through dynamic pro-
gramming that gives the exact optimum:

(i) Define V1,l = log(πl) + log fl(x1)
(ii) Define Vt,l = maxk[Vt−1,k + log pkl + log fl(xt)] for t = 2, ..., n

(iii) Define St,l = argmaxk[Vt−1,k + log pkl + log fl(xt)].
(iv) Define Copt

n = argmaxkVn,k

(v) Define Copt
t = St+1,Copt

t+1
for t = n− 1, ..., 1

This is also called the Viterbi algorithm.
Implement this algorithm as well and compare with previous results.

(e). Only for PhD students: Show that this algorithm actually gives the global optimum!
Hint: You can use any source you want to find this out, but you should give a proper
derivation of this and include a reference to your source.

Exercise 3 (The EM-algorithm). We will continue to work on the simulated data from
Exercise 1. Consider now however the problem of simultaneous estimation of C and θ. We
will in this exercise apply the EM-algorithm. On the course web-page there is an R-script,
HMM.E.R which calculates

qi|i−1(k) = Pr(Ci = k|x1, ..., xi−1) Prediction
qi|i(k) = Pr(Ci = k|x1, ..., xi) Updating
qi|n(k) = Pr(Ci = k|x1, ..., xn) Smoothing

as well as

qi−1,i|n(k, l = Pr(Ci = `, Ci−1 = k|x1, ..., xn)

which is based on the forward-backward algorithm discussed in the lecture.

(a). Make a function which, given the q’s above, calculates estimates for the unknown
parameters (the M-step in the EM-algorithm).
Include your calculations in the report!

(b). Combine your function with the one calculating the q’s to implement a function which
performs the EM-algorithm. Specify your convergence criterion.

(c). Include a routine which calculates the log-likelihood value for a given value of θ.
Hint: Use that

`(θ) = log f(x;θ)

= log f(x1;θ) +
n∑

i=2
log f(xi|x1, ..., xi−1;θ)
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and show that the terms f(xi|x1, ..., xi−1;θ) are possible to be calculated by the
output from the HMM.E.R script.

(d). How does the number of computational steps in this algorithm depend on n and K?

(e). Run the EM-algorithm on your siumulated data. Try out different starting values.
Confirm that the log-likelihood value is non-decreasing with the number of iterations
in the EM-algorithm. Discuss the results.

Exercise 4 (Direct parameter optimization). An alternative to the EM-algorithm is to im-
plement a function which directly calculates the log-likelihood for a given set of parameters
and then throw this function into a numerical optimizer. One problem that needs to be
considered in this case is the constraints on the parameters involved.

(a). Specify which constraints that are involved in the parameter vector θ. How many
free parameters do we then have?

(b). Suggest some reparametrization of θ which removes the constraints on the parame-
ters. Make sure that this reparametrization is invertible.

(c). Modify the routine you implemented in Exercise 3(c) to calculate the log-likelihood
using the reparametrized parameters as input. Optimize l(θ) through some numerical
optimizer.
Hint: You might expect that this optimization both is time-consuming and non-
stable.

Exercise 5 (Summary). Write a (maximum) one-page summary of the previous exercises
where you in particular consider the following points:

(a). Ways of obtaining uncertainty measures on the parameter estimates.

(b). The use of the EM algorithm compared with the direct optimization route for this
problem.

(c). The results you obtained. In particular, is there a need to include the temporal
dependence in the Ci’s?
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