
STK4051/9051 - Computational statistics -

solutions

Trial exam spring 2019

Exercise 1 (a) The inversion method is to generate X = F−1
0 (U) where

U ∼ Uniform[0, 1]. We have

1− e−xα =u
m

xα =− log(1− u)
m

x =[− log(1− u)]1/α

(b) We have x0 = x/β giving that

f(x) =f0(x/β)/β
=α(x/β)α−1e−(x/β)α/β

=αxα−1

βα
e−(x/β)α

showing the result. We can then generate x by

x = β[− log(1− u)]1/α

(c) We have

Pr(X ≤ x) = Pr(F−1
0 (Φ(Y )) ≤ x)

= Pr(Φ(Y ) ≤ F0(x))
= Pr(Y ≤ Φ−1(F0(x))
=Φ(Φ−1(F0(x))) = F0(x)

(d) We can then put

xj = F−1
0 (Φ(yj)).

Since (y1, y2) are dependent, so will (x1, x2) be.
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Exercise 2 (a) We will show that the Markov chain satisfies the detailed
balance criterion. We have for x 6= y

π(x)P (x,y) =π(x)K(x,y)rB(x,y)

=π(x)K(x,y) π(y)K(y,x)
π(x)K(x,y) + π(y)K(y,x)

=π(y)K(y,x) π(x)K(x,y)
π(x)K(x,y) + π(y)K(y,x)

=π(y)P (y, |x).

(b) If we simulate {xt} according to the described Markov chain, we have
from general theory that we can estimate µ = Eπ[h(x)] by

µ̂ = 1
L

D+L∑
t=D+1

h(xt)

where we discard the first D samples in order to minimized the bias
due to that it can take some time until the samples are close enough
to the target distribution. We further have

Var[µ̂] = 1
L2 [

D+L∑
t=D+1

Var[h(xt)] + 2
D+L−1∑
s=D+1

D+L∑
t=s+1

Cov[h(xs), h(xt)]

≈σ
2
h

L
[1 + 2

D+L−1∑
t=D+1

ρ(t− s)]

showing the dependence on the correlation structure.

(c) Assume π(y)K(y,x) ≥ π(x)K(x,y). Then rM (x,y) = 1 > rB(x,y).
Assume now π(y)K(y,x) < π(x)K(x,y). Then

rM (x,y) =π(y)K(y,x)
π(x)K(x,y) ≥

π(y)K(y,x)
π(x)K(x,y) + π(y)K(y,x) = rM (x,y)

showing the first result.

From the general result we then have that PM (x,y) ≥ PB(x,y) for
all x 6= y showing the second result.

Both algorithms are using the same proposals and both have the same
invariant distribution. Since M-H give higher acceptance probabilities,
the changes should happen more frequent and thereby give a more
efficient algorithm.

Exercise 3 (a) We then have

X|Y ∼N(ρY, 1− ρ2)
Y |X ∼N(ρX, 1− ρ2)

or

X|Y =ρY +
√

1− ρ2Z

Y |X =ρX +
√

1− ρ2V
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which, when using the Gibbs sampler gives the recursion

Yn =ρXn +
√

1− ρ2Zn,

Xn =ρYn−1 +
√

1− ρ2Vn.

were all the {Zn} and {Vn} are independent variables

(b) From the equation above we have

Xn =ρYn−1 +
√

1− ρ2Vn

=ρ[ρXn−1 +
√

1− ρ2Zn−1] +
√

1− ρ2Vn

=ρ2Xn−1 +
√

1− ρ2[ρZn−1 + Vn]
=ρ2Xn−1 + εn

were E[εn] = 0 and

Var[εn] =(1− ρ2)[ρ2 + 1] = 1− ρ4 ≡ σ2
ε

Since |ρ2| < 1, the general results about AR(1) processes applies.

(c) We have

E[Xn] =E[ρ2Xn−1 + εn|Xn−1] = ρ2E[Xn−1]

which recursively gives E[Xn] = ρ2nµ0 were µ0 = E[X0].

(d) We have

Var[Xn] =Var[ρ2Xn−1 + εn]
=ρ4Var[Xn−1] + σ2

ε

Assume now the statement about the variance is true for n. Then

Var[Xn+1] =ρ4Var[Xn] + σ2
ε

=ρ4 σ2
ε

1−ρ4 (1− ρ4n) + σ2
ε

=σ2
ε
ρ4(1−ρ4n)+1−ρ4

1−ρ4

=σ2
ε

1−ρ4(n+1)

1−ρ4 = σ2
ε

1−ρ4 (1− ρ4(n+1))

(e) When n→∞ we have

E[Xn]→0

Var[Xn]→ σ2
ε

1−ρ4 = 1

(f) We have

Yn =ρXn +
√

1− ρ2Zn

=ρ[ρYn−1 +
√

1− ρ2Vn] +
√

1− ρ2Zn

=ρ2Yn−1 +
√

1− ρ2[ρVn + Zn]
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which has the same structure as for Xn and the results become iden-
tical.

(g) We have

E[XnYn] =E[Xn(ρXn +
√

1− ρ2Zn)]
=ρE[X2

n]
=ρ[1− ρ4n + ρ4nµ2

0]
=ρ+ ρ4n+1(µ2

0 − 1)

(h) We see that E[XnYn]→ ρ

(i) We then see that the limit distribution for Xn, Yn) indeed is the target
distribution.

We see that the convergence speed is geometric in ρ2 for the mean and
geometric in ρ4 for the variances and the correlations.

Exercise 4 (a) The general idea is to simulate (φ, x1, ..., xt) by a proposal
distribution qφ(φ)q1(x1|φ)

∏t
i=2 qi(xi|xi−1, φ) and then use the impor-

tance sampling technique to get importance weights

wt =p(φ, x1, ..., xt|y1, ..., yt)
q(φ, x1, ..., xt)

∝p(φ)p(x1, ..., xt|φ)p(y1, ..., yt|x1, ..., xt, φ)
q(φ, x1, ..., xt)

=p(φ)p(x1|φ)
∏t
i=2 p(xi|xi−1, φ)

∏t
i=1 p(yt|xt)

qφ(φ)q1(x1|φ)
∏t
i=2 qi(xi|xi−1, φ)

∝wt−1
p(xt|xt−1, φ)p(yt|xt

q(xt|xt−1, φ)

showing that the weights can be calculated recursively.

Due to that the variance of the weights will increase with t, a degen-
eracy problem occur. This can be fixed by performing resampling at
each step (or when the efficient sample size is small).

(b) The resampling step will result in that fewer and fewer unique values of
φ will occur, in the end only one. This causes problems in estimation
of φ due to that we then effectively only have one sample for describing
the whole distribution of φ.

(c) Assume you have a properly weighted sample {(xit,Sit , wit), i = 1, ...,M}
with respect to p(xt,St|y1, ..., yt) where Sit are the sufficient statistics
needed for calculating the distribution p(φ|xi1, ..., xit, y1, ..., yt). The
idea is then to update to a properly weighted sample {(xit+1,S

i
t+1, w

i
t), i =

1, ...,M} with respect to p(xt+1,St+1|y1, ..., yt+1).
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We have

p(xt, St|y1:t−1) =
∫
xt−1

p(xt, St|xt−1, St−1)p(xt−1, St−1|y1:t−1)dxt−1dSt−1

≈
N∑
i=1

wit−1p(xt, St|xit−1, S
i
t−1)

p(xt, St|y1:t) ≈c ·
N∑
i=1

wit−1p(xt, St|xit−1, S
i
t−1)p(yt|xt).

Simulation from p(xt, St|xit−1, S
i
t−1) (possible proposal function)

(a) Simulate θi ∼ p(θ|xit−1, S
i
t−1) = p(θ|Sit−1).

(b) Simulate xit ∼ p(xt|xit−1, θ
i).

(c) Update sufficient statistics

(d) By turning the simulation from the static parameter φ to the random
variable St, we reduce the degeneracy problem and obtain a more
reliable description of the distribution for xt and φ as well.

In order to estimate φ, we can use Rao-Blackwellization in that

E[φ|y1, ..., yt] = E[E[φ|St]|y1, ..., yt]

where we now have explicit solutions for the inner expectation.

Exercise 5 (Weight loss programme) (a) Since β is only involved in the last
term, we get this result directly,

We have that

∂l(θ)
∂σ2 =− n

2σ2 + 1
2σ4

n∑
i=1

(yi − β0 − β1e
−β2xi)2

Putting this to zero, we obtain

σ̂2 = 1
n

n∑
i=1

(yi − β0 − β1e
−β2xi)2.

One can also show that the second derivative becomes positive, show-
ing that it is a maximum point. This shows that for given β̂ we have
an explicit solution for σ̂2.

(b) Assume one wants to minimize g(θ). Newton’s method:

θt+1 = θ − [g′′(θt)]−1g′(θt).

In this case θ = β and g(β) =
∑n
i=1(yi − β0 − β1e

−β2xi)2. We have
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∂g(β)
∂β0

=− 2
n∑
i=1

(yi − β0 − β1e
−β2xi)

∂g(β)
∂β1

=− 2
n∑
i=1

(yi − β0 − β1e
−β2xi)e−β2xi

∂g(β)
∂β2

=2
n∑
i=1

(yi − β0 − β1e
−β2xi)β1e

−β2xixi

∂2g(β)
∂β0∂β0

=2n

∂2g(β)
∂β0∂β1

=2
n∑
i=1

e−β2xi

∂2g(β)
∂β0∂β2

=2β1

n∑
i=1

e−β2xixi

∂2g(β)
∂β1∂β1

=2
n∑
i=1

e−2β2xi

∂2g(β)
∂β1∂β2

=2
n∑
i=1

(yi − β0 − 2β1e
−β2xi)e−β2xixi

∂2g(β)
∂β2∂β2

=− 2
n∑
i=1

(yi − β0 − β1e
−β2xi)β1e

−β2xix2
i +

n∑
i=1

β2
1e
−2β2xix2

i

(c) For the Fisher scoring algorithm, we replace the matrix of second
derivatives with their expectation. This guarantees that the matrix
becomes positive (semi-)definite due to that is the variance of the
scoring function.

(d) For given β2, we can define zi = e−β2xi and we then have an ordinary
linear regression model with zi as explanatory variable. We can then
use the general results from linear regression.

This means that we can reduce the optimization down to just one
variable, simplifying the problem significantly.

Exercise 6 (a) We have

Pr(Yi = y) =
K∑
k=1

Pr(Ci = k) Pr(Yi = y|Ci = k)

=
K∑
k=1

πk
λyke
−λk

y!

giving

L(θ) =
K∏
i=1

[
K∑
k=1

πk
λyik e

−λk

yi!
]
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Nelder-Mead: With θ p-dimensional, we start with p + 1 values of
θ. These p + 1 values are dynamically altered by changing the worst
value with a better one, defined through a search line going through
the worst value and the average of the other values. The worst value is
then updated to a better (best?) value along this line. The algorithm
is performing these steps iteratively until some stopping criterion is
achieved. This method does not need the derivatives.

(b) We have that the complete likelihood is given by

Lc(θ) =
n∏
i=1

πci
λyicie

−λci

yi!

`c(θ) = logLc(θ)

=
n∑
i=1

[log πci + yi log λci − λci − log yi!]

=
n∑
i=1

K∑
k=1

I(ci = k)[log πk + yi log λk − λk − log yi!]

Q(θ,θt) =E[`c(θ)|θt]

=
n∑
i=1

K∑
k=1

Pr(Ci = k|θt)[log πk + yi log λk − λk − log yi!]

Qlagr(θ,θt) =Q(θ,θt) + δ(
∑
k=1

πk − 1)

∂

∂πk
Qlagr(θ,θt) =

n∑
i=1

Pr(Ci = k|θt) 1
πk
− δ

giving

πtk =δ−1
n∑
i=1

Pr(Ci = k|θt)

= 1
n

n∑
i=1

Pr(Ci = k|θt)

∂

∂λk
Qlagr(θ,θt) =

n∑
i=1

Pr(Ci = k|θt)[ yi
λk
− 1]

giving

λt+1
k =

∑n
i=1 Pr(Ci = k|θt)yi∑n
i=1 Pr(Ci = k|θt)

where the probabilities Pr(Ci = k|θt) are based on the parameter
values from the previous iteration.

The EM-algorithm has the property that the (log-)likelihood values
will never decrease from one iteration to another, which the plot
demonstrate.
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(c) A problem in this case is that the different classes are difficult to
distinguish from the data, making several configurations of mixtures
of Poisson data possible.

Exercise 7 (a) In simulated annealing, first a neighborhood structure is
chosen defining possible changes at each iteration. Thereafter a possi-
ble proposal γ∗ is drawn from the neighborhood of the current value
γt. The proposal is then accepted with a probability

min[1, exp{[J(γt)− J(γ∗)]/τt}

where τt is the temperature at iteration t. In order to guarantee
convergence to the global maximum τt chould convergence to zero
as c/ log(1 + t) where c is the depth (the smalles increase needed to
escape from a local minimum). In practice this leads to much too slow
convergence and a faster decrease is typically used.

(b) If the temperature is chosen to be very large, just random changes are
made, not using J(γ) at all.

If a a very low temperature is chosen, changes are only made if a better
proposal is found, corresponding to a greedy algorithm.

If the temperature is fixed, we obtain a Metropolis-Hastings algorithm
with J(γ)/τ as target distribution. For τ = 1 this then corresponds
to a Bayesian posterior with the penalty term serving as a prior.

Exercise 8 (a) The mean field approximation approximates p(µ1, µ2|x) by

q(µ1, µ2) = q1(µ1)q2(µ2)

that is it assumes independence between µ1 and µ2. Typically, for con-
tinuous variables, one uses the Gaussian distributions for each compo-
nent, that is q(µj) = N(aj , b2

j ) for j = 1, 2 and {(aj , b2
j ), j = 1, 2}

then needs to be specified. This is typically done by minimizing
the Kullback-Leibler distance between q(µ1, µ2) and p(µ1, µ2|x). This
changes the integration problem to an optimization problem.

(b) Note that if the class-membership was known we have p(µ1, µ2|x, c) =
p(µ1|x, c)p(µ2|x, c), that is they are independent.

For the last row, the two classes are quite separated, making it rela-
tively easy to identify which xi’s that belong to the two classes. In
that case, the mean field approximation will become quite good. As
there becomes more ucnertainty to which classes that the xi’s belong
to, the mean field approximation becomes worse due to that there will
be more dependence between µ1 and µ2.
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