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Solution to exercise 1.

(a). We find directly that x∗ = c1/m

(b). We have g′(x) = mxm−1 giving

xn =xn −
g(xn−1)
g′(xn−1) = xn−1 −

xmn−1 − c
mxm−1

n−1

=xn−1 −
xn−1

m
+ cxn−1

mxmn−1
= xn−1[1− 1

m
+ c

mxmn−1
]

(c). We have that

x[1− 1
m

+ c

mxm
] ≥ c1/m

m

[1− 1
m

+ c

mxm
] ≥ c1/m

x
=
(

c
xm

)1/m

m

1− 1
m

+ y

m
≥ y1/m y = c

xm

m

1− 1
m
≥ y1/m − y

m

Denote h(y) = y1/m − y
m

. Then

h′(y) = 1
m
y−

m−1
m − 1

m

h′′(x) =− 1
m
m−1
m
y−

2m−1
m < 0 for y > 0
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Therefore h(y) has a max point when g′(y) = 0 corresponding to y = 1 in which case
g(y) = 1− 1

m
. This shows that 1− 1

m
≥ y1/m − y

m
which then implies that x > c1/m

(d). We have

xn =xn−1[1− 1
m

+ c

mxmn−1
]

≤xn−1[1− 1
m

+ c

mc
] = xn−1

(e). This means that x1 will always be larger than c1/m and that thereafter xn will decrease
monotonely towards c1/m.

Solution to exercise 2.

(a). Consider first f(x). Then

f ′(x) =


1

2
√
x

x ≥ 0
1

2
√
−x x < 0

If xn−1 > 0 we get

xn =xn−1 −
√
xn−1
1

2√xn−1

= xn−1 − 2xn−1 = −xn−1

while if xn−1 > 0 we get

xn =xn−1 −
√−xn−1

1
2
√
−xn−1

= xn−1 − 2xn−1 = −xn−1

so the algorithm will alternate between x0 and −x0.

(b). Consider now g(x). Then

g′(x) =1
3x
−2/3

xn =xn−1 −
x

1/3
n−1

1
3x
−2/3
n−1

=xn−1 − 3xn−1 = −2xn−1

so in this case the algorithm will diverge!
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Solution to exercise 3.
Assume a function G(x) which is contractive, that is

• G(x) ∈ [a, b] whenever x ∈ [a, b], and

• |G(x1)−G(x2)| ≤ λ|x1 − x2| for all x1, x2 ∈ [a, b] for some λ ∈ (0, 1)
We will show that then there exist a unique fixed point x∗ in the interval, and that the
fixed-point algorithm will converge to it from any starting point in the interval. The
fixed-point algorithm is given by

xk+1 = G(xk)
(a). Follows directly by induction.

(b). We have

|x2 − x1| =|G(x1)−G(x0)| ≤ λ|x1 − x0|

so the statement is true for k = 1. Assume now it is true for k. Then

|xk+2 − xk+1| =|G(xk+1)−G(xk|
≤λ|xk+1 − xk|
≤λλk|x1 − x0| = λk+1|x1 − x0|

(c). We have

|xm − xn| =|
m−1∑
k=n

(xk+1 − xk)| ≤
m−1∑
k=n
|xk+1 − xk|

≤
m−1∑
k=n

λk|x1 − x0| = |x1 − x0|λn
m−n−1∑
k=0

λk

=|x1 − x0|λn
1− λm−n

1− λ ≤ |x1 − x0|
λn

1− λ
(d).

|x1 − x0|
λn

1− λ <ε

m

λn <
(1− λ)ε
|x1 − x0|
m

n log(λ) < log(1− λ) + log(ε)− log(|x1 − x0|)
m

n >
log(1− λ) + log(ε)− log(|x1 − x0|)

log(λ) = N
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where the change of inequality sign is due to that log(λ) < 0.

We then see that we are able to find a proper threshold N .

(e). We obtain the first inequality by defining x1 = x∞ and x0 = y∞. Since λ < 1 this
shows that the fixed point is unique.

(f). (i) We both have that

|f(1.4)− f(1.3)| = 0.17
|f(−0.4)− f(−0.3)| = 0.17

showing that the function is not contractive.

f(−1
2) =− 1

2
f(1

2) =1
2

f(3
2) =1

2

showing that f(x) ∈ (−1
2 ,

3
2) for x ∈ (−1

2 ,
3
2).

(ii) Assume first x0 > 0.5. Then f ′(x0) < 0 so the largest point we can get is when
we start at 0.5 in which case f(x) = 0.5. This shows that x1 = f(x0) < 0.5

(iii) Assume now that −0.5 < x1 < 0.5. Then f ′(x) > 0 so we will always increase.
However, again the maximum point we can get is 0.5 showing that that it will
converge.

This shows that the contractive property is sufficient but not necessary for
convergence of the fixed point algorithm.

(iv) If x0 = 1.5, then f(x0) = −0.5 and larger values of x0 will result in smaller
values of f(x0).
If x0 < −0.5 then

−x2 + x+ 1
4 < −0.25− 0.5 + 0.25 = −0.5

so it will stay in this interval. In these cases the fixed point algorithm will not
converge.

Solution to exercise 4.

(a). Assume we have M . Then we put θj = 1 for those j ∈ M and zero for the rest,
defining θ.

Assume we have θ. Then we include into all M those j’s for which θj = 1, defining
M .
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(b). We have:

• The sizes of the neighborhoods are p, p(p − 1), p(p − 1) and p + p(p − 1),
respectively.

• The first one communicate, the second do not and the third one does not allow
the number of ”active” components to change and therefore do not communi-
cate. The last one communicate since the first one does.

• For N1, the maximum number of moves is p. For N4, in order to move from
(00 · · · 0) to (11 · · · 1) we need p moves (all in N1), giving also p necessary moves
in this case.

(c). Steepest ascent: If we start on 000, all solutions within N1 have lower values, so 000
is a local mode that we are not able to escape from. However, for N2 we are able to
move out of this mode.

Simulated annealing: If we just use a neighbourhood that communicate, all possibil-
ities are available.

Genetic algorithms: As long as we include mutations that make all solutions com-
municate, the algorithms is able to find the solution.

Tabu algorithms: For N1 and as long as the memory is smaller than the size of the
neighborhoud, this is ok.

Solution to exercise 5.

(a). Since −φ(·) then is convex, the result follows directly

(b). Defining y = F (x) we have that dy = f(x)dx and∫
φ(g(x))f(x)dx =

∫
φ(g(F−1(y)))dy

≤φ(
∫
g(F−1(y))dy

=φ(
∫
g(x)f(x)dx

This can be expressed as

φ(E[X]) ≥ E[φ(X)].

(c). Define Y = log(X). Since the exponential function is convex, we have that

E[X] = E[exp(Y )] ≥ exp(E[Y ]) = exp(E[log(X)])
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Alternatively, we have that since the log-function is concave,

log(E[X]) ≥ E[log(X)]

We have that E(X) = exp(µ+ 0.5σ2) ≥ exp(µ) confirming the result.

Solution to exercise 6.

(a). Likelihood-function

L(θ) =
(

n

x1 x2 x3 x4

)
1

4n θ
x1(1− θ)x2+x3(2 + θ)x4

`(θ) =Const + x1 log(θ) + (x2 + x3) log(1− θ) + x4 log(2 + θ)

For x = (34, 18, 20, 125):

0.0 0.2 0.4 0.6 0.8 1.0

−
60

−
40

−
20

0
20

40
60

theta

l(t
he

ta
)

(b). For x = (5, 0, 1, 14):

0.0 0.2 0.4 0.6 0.8 1.0

−
60

−
40

−
20

0
20

40
60

theta

lfu
nc

(t
he

ta
, x

)

(c). We have

s(θ) =`′(θ) = x1
θ
− x2+x3

1−θ + x4
2+θ

J(θ) =− `′′(θ) = x1
θ2 + x2+x3

(1−θ)2 + x4
(2+θ)2

defining the Newton-Raphson method. See the R-script genetic linkage.R for
implementation. Note that the trick of halving is needed for the second data example.
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Define now (x1, x2, x3, y4, y5) to be the complete data, where y4 = x4 − y5. The
complete log-likelihood is given by

`(θ) =Const + x1 log(θ) + (x2 + x3) log(1− θ) + (x4 − y5) log(2) + y5 log(θ)
Q(θ|θ(t)) =Const + x1 log(θ) + (x2 + x3) log(1− θ) + x4 log(2)

E[Y5|x4, θ
(t)[log(θ)− log(2)]

Y5|x4 ∼Binom(x4,
θ

2+θ )
Q(θ|θ(t)) =Const + x1 log(θ) + (x2 + x3) log(1− θ) + x4 log(2)+

x4θ
(t)

2 + θ(t) [log(θ)− log(2)]

∂

∂θ
Q(θ|θ(t)) =x1

θ
− x2 + x3

1− θ + x4θ
(t)

2 + θ(t)
1
θ

giving

θ(t+1) =
x1 + x4

θ(t)

2+θ(t)

x1 + x2 + x3 + x4
θ(t)

2+θ(t)

See genetic linkage.R for implementation.

Solution to exercise 7.
Since

∑
k πk = 1, we need to introduce a Lagrange term:

Qlagr(θ|θ(t)) =
n∑
i=1

K∑
k=1

Pr(Ci = k|x,θ(t))[log(πk)− 1
2 log(σ2

k)− 1
2σ2
k
(xi − µk)2]+

λ(1−
K∑
k=1

πk)

∂

∂πk
Qlagr(θ|θ(t)) =

n∑
i=1

Pr(Ci = k|x,θ(t))π−1
k − λ

giving

π
(t+1)
k =λ−1

n∑
i=1

Pr(Ci = k|x,θ(t))

= 1
n

n∑
i=1

Pr(Ci = k|x,θ(t))

Further

∂

∂µk
Q(θ|θ(t)) =

n∑
i=1

Pr(Ci = k|x,θ(t))[ 1
σ2
k
(xi − µk)]
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giving

µ
(t+1)
k =

∑n
i=1 Pr(Ci = k|x,θ(t))xi∑n
i=1 Pr(Ci = k|x,θ(t))

Similarly,

∂

∂σ2
k

Q(θ|θ(t)) =
n∑
i=1

Pr(Ci = k|x,θ(t))[− 1
2σ2
k

+ 1
2σ4
k
(xi − µk)2]

giving

(σ2
k)(t+1) =

∑n
i=1 Pr(Ci = k|x,θ(t))(xi − µ(t+1)

k )2∑n
i=1 Pr(Ci = k|x,θ(t))

Solution to exercise 8.

Solution to exercise 9.

(a). We have

∞ =
∞∑
t=1

at =
T∑
t=1

at +
∞∑

t=T+1
at

Since the first sum on the right hand side is finite, the second has to be infinite.

(b). Assume
∑∞
t=1 αt <∞. Then

∞∑
t=2

αt
α1 + · · ·+ αt−1

≤
∞∑
t=2

αt
α1

= 1
α1

∞∑
t=2

αt <∞.

giving a contradiction.

(c). Assume limt→∞ bt = δ > 0. Then there exists some 0 < ε < δ and T such that bt > ε
for t > T . Then

∞∑
t=1

atbt =
T∑
t=1

atbt +
∞∑

t=T+1
atbt ≥

T∑
t=1

atbt + ε
∞∑

t=T+1
at =∞

giving a contradiction.
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(d). We have that

θt =θt−1 − αt−1Z(θt−1, ξt−1)
=θt−2 − αt−2Z(θt−2, ξt−2)− αt−1Z(θt−1, ξt−1)
...

=θ1 −
t−1∑
s=1

αsZ(θs, ξs)

giving

|θt − θ∗| =|θ1 −
t−1∑
s=1

αsZ(θs, ξs)− θ∗| ≤ |θ1 − θ∗|+
t−1∑
s=1

αs|Z(θs, ξs)|

≤|θ1 − θ∗|+
t−1∑
s=1

αsC = At

Note also that from the above we obtain

|θt − θ1| ≤ C
t−1∑
s=1

αs

In order not to constrain the possibility of moving θt, we want
∑∞
s=1 αs =∞.

Further, if all the Z(θs, ξs) are independent with identical variance σ2, we have

Var[θt − θ1] = σ2
t−1∑
s=1

α2
s.

In order for this variance not to explode, we would like
∑∞
s=1 α

2
s <∞.

The last argument is not complete since the Z(θs, ξs) are clearly dependent (they
depend on the previous θs values which again depend on the previous Z’s), it still
give some heuristic argument for why the constraint

∑∞
s=1 α

2
s < ∞ is reasonable to

assume.

Solution to exercise 10.

(a). We have

E[s(θ;X)] =
∫
x
[ ∂
∂θ

log f(x; θ)]f(x; θ)dx

=
∫
x

∂
∂θ
f(x; θ)dx

= ∂
∂θ

∫
x
f(x; θ)dx

= ∂
∂θ

1 = 0
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(b). We have

E[l′′(θ;X)] =
∫
x
[ ∂2

∂θ2 log f(x; θ)]f(x; θ)dx

=
∫
x
[ ∂
∂θ

f ′(x;θ)
f(x;θ) ]f(x; θ)dx

=
∫
x

f ′′(x;θ)f(x;θ)−f ′(x;θ)f ′(x;θ)
[f(x;θ)]2 f(x; θ)dx

=
∫
x
f ′′(x; θ)dx−

∫
x

f ′(x;θ)f ′(x;θ)
[f(x;θ)]2 f(x; θ)dx

= ∂2

∂θ2

∫
x
f(x; θ)dx−

∫
x
[ ∂
∂θ

log f(x; θ)]2f(x; θ)dx

=− E[s(θ;X)2]

Therefore

Var[s(θ;X)] =E[s(θ;X)2]− [E[s(θ;X)]]2

=− E[l′′(θ;X)]− 0 = I(θ)

(c).

In(θ) =− E[
n∑
i=1

∂2

∂θ2 l(θ;Xi)] =
n∑
i=1
−E[ ∂2

∂θ2 l(θ;Xi)]

=nI(θ) = nVar[s(θ;X)]

(d). Now

`(θ;x) = log[Γ(0.5(ν + 1))]− 0.5
√
νπ − log[Γ(0.5ν)]− 0.5(ν + 1) log(1 + v−1(x− θ)2)

s(θ;x) =− 0.5(ν + 1) −2v−1(x− θ)
1 + v−1(x− θ)2

=(ν + 1) x− θ
ν + (x− θ)2

J(θ;x) =− (ν + 1)−ν − (x− θ)2 + 2(x− θ)2

[ν + (x− θ)2]2

=(ν + 1) ν − (x− θ)2

[ν + (x− θ)2]2

See Extra 8.R

(e). See Extra 8.R

(f). The theoretical results are only valid for θ = θ∗!
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Solution to exercise 11.

(a). 10 repetitions with random initial points on the α’s and linear regression estimates
on the β’s given the α’s of the algorithm with n = 10 000 gave Q − values ranging
from 10025.54 to 10368.43:

10217.33 10144.09 10105.26 10368.43 10097.87 10188.39
10120.00 10025.54 10079.28 10200.39

This indicates that the algorithms is quite sensitive to starting values.

(b). Using m = 1, 3, 5, 10, 20, 30, 40, 50, 100, 150, 200, repeating the procedure 10 times for
each value of m gave the following results:

0 50 100 150 200

10
00

0
20

00
0

30
00

0

m

Q

The minimum value 9925.46 was obtained for m = 20 while for m = 1 we obtained
9925.61. It seems like the procedure is working best for small m.

(c). Using δ = 0.500.550.600.650.700.750.800.850.900.951.00 and m = 1, repeating the
procedure 10 times for each value of δ gave the following results:
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0.5 0.6 0.7 0.8 0.9 1.0

10
00

0
12

00
0

14
00

0

 δ

Q

The smallest value obtained was 9931.51 for δ = 0.5. It is not very clear what is
preferable here, but top large values should be avoided.

(d). Running now with m = 1 and δ = 0.5 22 times gave the following values of Q:

10041.637 9955.682 10016.338 9950.949 9948.319 9960.379
9941.765 9938.026 9956.522 9986.015 9938.413 9972.349

10025.531 10078.068 9926.557 10004.114 9947.645 9941.453
9964.286 9967.233

with the smallest value equal to 9926.557. Note that this is smaller than the values
obtained by using LS estimates on β!

Solution to exercise 12.

(a). m = 5, 10, 20), 10 000 iterations, 4 repetitions gave
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5 10 15 20

−
82

5.
79

0
−

82
5.

78
0

−
82

5.
77

0

m

l

The best value was -825.79.

10 repetitions with only 1000 iterations gave best value -825.81!

(b). geoR gave log-likelihood of -791.7.

(c). Struggled even with n = 1000.

(d).

Solution to exercise 13.

(a). We have

Pr(X ≤ x) = Pr(F−1(U) ≤ x)
= Pr(U ≤ F (x)) = F (x)

showing that X has cumulative distribution function F (x).
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(b). We have

X =F−1(U)
m

F (X) =U
m

1
π

tan−1
(
X−x0
γ

)
+ 1

2 =U

m
X =x0 + γ tan(π[U − 1

2 ])

Solution to exercise 14.

(a). We have

exp(−0.5(X2
1 +X2

2 )) = exp(−0.5(−2 log(U1) cos2(2πU2)− 2 log(U1) sin2(2πU2)))
= exp(−0.5(−2 log(U1))) = U1

1
2π tan−1(X2/X1) = 1

2π tan−1(sin(2πU2)/ cos(2πU2))

= 1
2π tan−1(tan(2πU2)) = U2

(b). We have that

fX(x) =fU(g−1(x))
∣∣∣∣∣ ∂∂xg−1(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
−X1 exp(−0.5(X2

1 +X2
2 )) −X2 exp(−0.5(X2

1 +X2
2 ))

1
2π
−X2/X2

1
1+X2

2/X
2
1

1
2π

1/X1
1+X2

2/X
2
1

∣∣∣∣∣∣
= 1

2π exp(−0.5(X2
1 +X2

2 ))
∣∣∣∣∣ −X1 −X2
−X2

X2
1 +X2

2

X1
X2

1 +X2
2

∣∣∣∣∣
= 1√

2π
exp(−0.5X2

1 )) 1√
2π

exp(−0.5X2
2 ))

which is the product of two standard Gaussian densities.

(c). Use that X = µ+ σZ where Z is standard Gaussian.
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(d). AssumeZ is a vector of independent standard Gaussian variables. Let Σ = Σ1/2(Σ1/2)T
(e.g. the Cholesky decomposition). Then define X = µ+Σ1/2Z. The vector is Gaus-
sian since it is a linear combination of Gaussians, and

E[X] =E[µ+ Σ1/2Z] = 0
Var[X] =Var[µ+ Σ1/2Z] = Σ1/2I(Σ1/2)T = Σ

Solution to exercise 16.

(a).

(b).

(c).

(d). Define Z = X + 2 were X ∼ N(0, 1). Then

E[Z|Z > 3] =E[X + 2|X + 2 > 3] = 2 + E[X|X > 1]

=
∫ ∞

1
x

1√
2πe
−0.5x2

Pr(X > 1)dx

=2 +
[− 1√

2πe
−0.5x2 ]∞1

1− Pr(X ≤ 1) = 2 +
1√
2πe
−0.5

1− Pr(X ≤ 1)

(e). For exponential we have the forgetting property so that given that Z > 3 we still
have that it is exponential, so that

E[Z|Z > 3] = 3 + E[Z0] = 3 + 0.5

Solution to exercise 18.

(a). The significance level is given by

α = Pr(Reject hypothesis|Hypothesis is true)

= Pr(T > c0|µ = 0) = [I(T > c0)|µ = 0] ≈ 1
N

N∑
j=1

Tj

were Tj is obtained by simulating n x′is fromN(0, σ) and then calculating T =
√
nx̄/s.
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(b).

(c).

(d).

(e). True significance level closer to α when n is larger. Due to the central limit theorem!
This means that the t confidence intervals will be quite accurate also when n is large.

Solution to exercise 18.

(a). We have that

Gi =
∫ zi

zi−1
g(x)dx

=c
∫ zi

zi−1
exp(ai + bix)dx

=c 1
bi

[exp(ai + bizi)− exp(ai + bizi−1)]

=c 1
bi

exp(ai)[exp(bizi)− exp(bizi−1)].

were one of the terms inside the last parentes will be zero for the first and the last
interval.

Since g is a density, we have

c−1 =
k+1∑
i=1

Gi.

(b). For x ∈ (zj−1, zj] the result

G(x) =
j−1∑
i=1

Gi + c

bj
exp(aj)[exp(bjx)− exp(bjzj−1)]

follows directly from the earlier derivations.

(c). For
∑j−1
i=1 Gi < u ≤ ∑j

i=1 Gi we have

j−1∑
i=1

Gi + c

bj
exp(aj)[exp(bjx)− exp(bjzj−1)] = u

or

c

bj
exp(aj)[exp(bjx)− exp(bjzj−1)] = u−

j−1∑
i=1

Gi
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or

exp(bjx)− exp(bjzj−1) = bj
c

exp(−aj)(u−
j−1∑
i=1

Gi)

giving

x = 1
bj

log[exp(bjzj−1) + bj
c

exp(−aj)(u−
j−1∑
i=1

Gi)]

=zj−1 + 1
bj

log[1 + bj
c

exp(−aj − bjzj−1)(u−
j−1∑
i=1

Gi)]

For u = ∑j−1
i=1 Gi we obtain zj−1 and for u = ∑j

i=1 Gi we obtain zj. Since the function
is monotone in u it then has to be within the interval (zj−1, zj].

(d). The main part in the ARS algorithm is to simulate from a piecewise linear density.
To perform this we need the following steps:

(i) Generate u ∼ Unif[0, 1].
(ii) Find j such that

∑j−1
i=1 Gi < u ≤ ∑j

i=1 Gi

(iii) Put x = zj−1 + 1
bj

log[1 + bj
c

exp(−aj − bjzj−1)(u−∑j−1
i=1 Gi)]

We need to precompute the terms
∑j
i=1 Gi. The search for j can be time-consuming

if k is large. We will however see later that there are efficient algorithms for that as
well!

Solution to exercise 20. (a). We have

p(x|z) = p(x)p(z|x)
p(z) ∝ 1√

2π
exp(−1

2x
2)f(z|x) ∝ exp(−1

2x
2)f(z|x)

(b). We need that there exist an α̃ such that

exp(−1
2x

2)f(z|x)
1√
2π exp(−1

2x
2) ≤M

or

√
2πf(z|x) ≤M

which is ok due to the constraint on f(z|x). In this case we can sample from N(0, 1)
an accept with probability

√
2πf(z|x)/M

17



(c). For Z|X = x ∼ N(ax, σ2), we have

√
2πf(z|x) = 1

σ
exp(− 1

2σ2 (z − ax)2) ≤ 1
σ

so given that we have simulated a value x, we will accept with probability exp(− 1
2σ2 (z−

ax)2). Now the expected probability of accepting is

EX [exp(− 1
2σ2 (z − aX)2)]

=
∫

exp(− 1
2σ2 (z − ax)2 1√

2π
exp(−1

2x
2)dx

= 1√
2π

∫
exp(−1

2 [ z
2

σ2 − 2az
σ2x+ a2

σ2x
2 − x2])dx

= 1√
2π

exp(− z2

2σ2 )
∫

exp(−1
2 [a2+σ2

σ2 x2 − 2 az
σ2x])dx

= 1√
2π

exp(− z2

2σ2 )
∫

exp(−a2+σ2

2σ2 [x2 − 2 az
a2+σ2x])dx

= exp(− z2

2σ2 ) exp(a2+σ2

2σ2 ( az
a2+σ2 )2)

1√
2π

∫
exp(−a2+σ2

2σ2 [(x− az
a2+σ2 )2])dx

= exp(− 1
2σ2 z

2) exp( 1
2σ2 ( a2z2

a2+σ2 ))
√
a2+σ2

σ

= exp(− z2

2(a2+σ2))
√
a2+σ2

σ

so it will decrease with z deviating from zero, which is reasonable since we use a
proposal distribution that is centered around zero.exp(-

Solution to exercise 22. (a). We have

J =E[(X + a)2] = E[X2 + 2aX + a2] = 1 + a2

(b). We have with M simulations

MVar[Ĵ ] =E[(X + a)4]− [E[(X + a)2]]2

=E[X4 + 4aX3 + 6a2X2 + 4a3X + a4]− [E[X2 + 2aX + a2]]2

=3 + 0 + 6a2 + 0 + a4 − [1 + 0 + a2]2

=3 + 6a2 + a4 − 1− 2a2 − a4 = 2 + 4a2

18



(c). We have

J =
∫ ∞
−∞

(x+ a)2φ(x) dx =
∫ ∞
−∞

(x+ a)2 φ(x)
φ(x− a)φ(x− a) dx

An alternative would be to utilize that

J =
∫ ∞
−∞

(x+ a)2φ(x) dx

=
∫ ∞
−∞

y2φ(y − a) dy

≈ 1
M

M∑
i=1

y2
i

where now yi ∼ N(a, 1).

Solution to exercise 23.
Since each θ∗i ∼ p(θ|x), we have that [Eθ∗i ] = E[θ|x] = θ̂ and Var[θ∗i ] = E[(θ − θ̂)2|x] =
Var[θ|x] which results in that

E[θ∗|x] =θ̂;
E[(θ∗ − θ)2|x] =E[(θ∗ − θ̂ + θ̂ − θ)2|x]

=E[(θ∗ − θ̂)2|x] + E[(θ̂ − θ)2|x] + 2E[(θ∗ − θ̂)(θ̂ − θ)|x]

= 1
M

Var[θ∗i ] + E[(θ̂ − θ)2|x]

=(1 + 1
m

)E[(θ̂ − θ)2|x]
=(1 + 1

m
)Var[θ|x]

This shows that the main variability comes from the data, the extra variability due to
Monte Carlo estimation of θ̂ is small for m of reasonable size.

Solution to exercise 24.
The aim is to find X = r such that Pr−1 < U ≤ Pr as efficient as possible.

(a). We have that since gX = max{j|Pj < int(MU + 1)/M} and Y = gX + 1 that
PY ≥ int(MU + 1)/M > U . We therefore have that Y > r which means that we
have to search backwards. By decreasing Y as long as PY−1 > U we obtain the right
X = r.

19



(b). Assume that we need three iterations in step 4. This means that PY−3 > U for
Y = gX + 1 and X = int(MU + 1) so Pgx−2 > U . But we also have

PgX−2 <
X − 2
M

= int(MU + 1)− 2
M

= int(MU − 1)
M

< U

showing that it is not possible that PY−3 > U and that the maximum number of
iterations is 2.

(c). Assume now U ∈ ( i−1
M
, i
M

). Then PY > i
M

. Define Ni to be the number of Pj ∈
( i−1
M
, i
M

). Now there are two options.

• Either Ni = 0 in which case PY−1 <
i−1
M

< U and we are done.

• Or Ni > 0 in which case a maximum 1 +Ni iterations are needed.

Then, if N is the number of iterations, we have

E[N ] =
M∑
i=1

E[N |U ∈ ( i−1
M
, i
M

)] Pr(U ∈ ( i−1
M
, i
M

))

≤
M∑
i=1

(1 +Ni) 1
M

= 1 + 1
M

M∑
i=1

Ni = 2

where we have used that there are in total M Pj’s and therefore
∑M
i=1 Ni = M .

(d). The main part of the ARS algorithm is to find the interval for which
∑j−1
i=1 < u ≤∑j

i=1 Gi which corresponds to finding r in this exercise.

Solution to exercise 26. (a). Assume xt−1 ∼ N(µ, σ2/(1− a2)). Then

xt = µ+ a(xt−1 − µ) + εt, εt ∼ N(0, σ2)

were εt is independent of xt−1. Then xt is a lineary combination of Gaussian variables,
making itself Gaussian. Further

E[xt] =µ+ a(E[xt−1 − µ) + E[εt] = µ

Var[xt] =a2Var[xt−1] + Var[εt] = a2 σ2

1−a2 + σ2 = σ2

1−a2

(b). We have

p(x1:T |y1:T ) =p(x1:T )p(y1:T |x1:T )
p(y1:T )

∝p(x1)p(y1|x1)
T∏
t=2

p(xt|xt−1)p(yt|xt)

were each of the densities involved are specified through the given model.
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(c). We have then that g(x1:t) = p(x1:t) so that

wt(x1:t) = p(x1:t|y1:t)
g(x1:t)

∝ p(y1:t|x1:t) = p(y1:t−1|x1:t−1)p(yt|xt) ∝ wt−1(x1:t−1)p(yt|xt)

We only need the weights up to a proportionality constant (since we will normalize
them anyway), showing the result with ut(y1, xt) = p(yt|xt).

(d).

(e). The importance weights we calculate is based on the whole sequence x1:t. Therefore
the samples (xi1:t, w

i
t) are properly weighted with respect to p(x1:t|y1:t). When t = T ,

we then obtain properly weighted samples from p(x1:T |y1:T ).
When we perform resampling in the algorithm, note that we then need to resample
the whole sequence x1:t.

A problem when looking at these ”smoothed” estimates is that for t small, the num-
ber of unique samples is very low. Imn this case, were T is not too large and the
number of samples N is large enough, we do however still get reasonable estmates
and uncertainty measures even for x1.

Solution to exercise 27. (a). We have

p(x|y) ∝p(x)p(y|x)
∝ exp(− 1

2σ2 (x− µ)2) exp(x)y exp(− exp(x))
y!

∝ exp(− 1
2σ2 (x2 − 2µx) + yx− exp(x))

(b). We have that this approximation corresponds to a Gaussian approximation to p(z|y).
From the prior we have that x should not be too far from µ. The approximation of
exp(x) corresponds to a Taylor approximation for exp(µ) around µ. We then get

log p(x|y) ≈Const− 1
2σ2 (x2 − 2µx) + yx− eµ − eµ(x− µ)− 1

2e
µ(x− µ)2

=Const− ( 1
2σ2 + 1

2e
µ)x2 + ( µ

σ2 + y − eµ + µeµ)x

=Const− ( 1
2σ2 + 1

2e
µ)[x−

µ
σ2 + y − eµ + µeµ

1
σ2 + eµ

]2

=Const− 1
2σ̃2 (x− µ̃)2
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with

σ̃2 = 1
1
σ2 + eµ

= σ2

1 + σ2eµ

µ̃ =
µ
σ2 + y − eµ + µeµ

1
σ2 + eµ

= µ+ σ2(y − eµ + µeµ)
1 + σ2eµ

Solution to exercise 30. (a). We have that

E[Ψ̂n(θ)] =Eθ[X∗j ] = Ψ(θ)

Var[Ψ̂n(θ)] = 1
N

Var[X∗j ] = 1
N
σ2(θ)

By the central limit theorem we then get

Ψ̂n(θ)−Ψ(θ) ≈ N(0, 1
N
σ2(θ))

(b). We have

Ψ̂n(θj)−Ψ(θj) ≈ N(0, 1
N
σ2(θj)), j = 1, 2

and combined with independence we get

Ψ̂n(θ1)− Ψ̂n(θ2) ≈ N(Ψ(θ1)−Ψ(θ2), 1
N

(σ2(θ1) + σ2(θ2)))

(c). Now

Ψ̂n(θ1)− Ψ̂n(θ2) = 1
N

N∑
j=1

[h(θ1, Z
∗
j )− h(θ2, Z

∗
j )]

which has the same expectation as before but variance

Var[Ψ̂n(θ1)− Ψ̂n(θ2)]
= 1
N

Var[h(θ1, Z
∗
j )− h(θ2, Z

∗
j )]

= 1
N

[Var[h(θ1, Z
∗
j )] + Var[h(θ2, Z

∗
j )]− 2Cov[h(θ1, Z

∗
j ), h(θ2, Z

∗
j )]]

= 1
N

[σ2(θ1) + σ2(θ2)− 2σ(θ1)σ(θ2)ρ(θ1, θ2)]
= 1
N

(σ2(θ1) + σ2(θ2))[1− 2σ(θ1)σ(θ2)
σ2(θ1)+σ2(θ2)ρ(θ1, θ2)] ≡ 1

N
τ 2(θ1, θ2)

(d). We then have

Ψ̂n(θ1)− Ψ̂n(θ2) ≈ 1
N

N∑
j=1

∂h(θ1, Z
∗
j )

∂θ
(θ2 − θ1)
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and we obtain the approximate distribution

Ψ̂n(θ1)− Ψ̂n(θ2) ≈ N

(
(θ2 − θ1)E

[
∂h(θ1, Z

∗
j )

∂θ

]
, 1
N
τ 2(θ1, θ2)

)

Note that if h(·) is sufficiently smooth and both h and its derivative is integrable, we
have

E

[
∂h(θ, Z∗j )

∂θ

]
=
∫
z

∂h(θ, Z∗j )
∂θ

f(z)dz

= ∂

∂θ

∫
z
h(θ, Z∗j )f(z)dz = ∂

∂θ
Ψ(θ)

(e). We have for θ1 ≈ θ2 that

∂Ψ(θ1)
∂θ

≈ Ψ(θ1)−Ψ(θ2)
θ1 − θ2

which we can approximate by

Ψ̂n(θ1)− Ψ̂n(θ2)
θ1 − θ2

≈ N
(
Ψ′(θ), 1

N
τ2(θ1,θ2)
(θ1−θ2)2

)
Given that the denominator in the variance can be small, it is important to also make
the nominator small.

Solution to exercise 36. (a). We have that the proposal is X∗t = Xt+εt. Since the proposal
distribution is symmetric, the Metropolis-Hastings ratio becomes

Rt = h(X∗t )
h(Xt)

= h(Xt + εt)
h(Xt)

.

If we generate Ut ∼ Uniform[0, 1], then we can accept if Ut ≤ min{1, Rt} which is
equivalent to accept if Ut < Rt. This means that

Xt+1 =

X∗t if Ut < Rt

Xt otherwise

=Xt + Itεt

given the definition of It.

Making the distribution of εt to symmetric simplifies the MH-ratio in that the pro-
posal densities disappear.
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(b). In this case

Rt = exp(−0.5(Xt + εt)2)
exp(−0.5X2

t ) = exp(−Xtεt − 0.5ε2
t )

Since we have a distribution centered at zero, we would like to mostly move towards
zero, which means making εt negative if Xt is positive and vice verse.

(c). No, if Rt ≥ 1, you do not need to generate Ut.

Solution to exercise 38. (a). We have in general that if

x =
(
x1
x2

)
∼N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))

then

E[x1|x2] =µ1 + σ12Σ
−1
22 [x2 − µ2]

Var[x1|x2] =Σ11 − σ12Σ
−1
22 σ21.

This gives

E[x1|x2] =1 + a(x2 − 2) = 1− 2a+ ax2

Var[x1|x2] =1− a2

E[x2|x1] =2 + a(x1 − 1) = 2− a+ ax1

Var[x1|x2] =1− a2

Solution to exercise 39. (a). We then have

X|Y ∼N(ρY, 1− ρ2)
Y |X ∼N(ρX, 1− ρ2)

or

X|Y =ρY +
√

1− ρ2Z

Y |X =ρX +
√

1− ρ2V

which, when using the Gibbs sampler gives the recursion

Yn =ρXn +
√

1− ρ2Zn,

Xn =ρYn−1 +
√

1− ρ2Vn.

were all the {Zn} and {Vn} are independent variables
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(b). From the equation above we have

Xn =ρYn−1 +
√

1− ρ2Vn

=ρ[ρXn−1 +
√

1− ρ2Zn−1] +
√

1− ρ2Vn

=ρ2Xn−1 +
√

1− ρ2[ρZn−1 + Vn]
=ρ2Xn−1 + εn

were E[εn] = 0 and

Var[εn] =(1− ρ2)[ρ2 + 1] = 1− ρ4 ≡ σ2
ε

Since |1− ρ4| < 1, the general results about AR(1) processes applies.

(c). We have

E[Xn] =E[ρ2Xn−1 + εn|Xn] = ρ2E[Xn−1]

which recursively gives E[Xn] = ρ2nµ0 were µ0 = E[Xn].

(d). We have

Var[Xn] =Var[ρ2Xn−1 + εn]
=ρ4Var[Xn−1] + σ2

ε

Assume now the statement about the variance is true for n. Then

Var[Xn+1] =ρ4Var[Xn] + σ2
ε

=ρ4 σ2
ε

1−ρ4 (1− ρ4n) + σ2
ε

=σ2
ε
ρ4(1−ρ4n)+1−ρ4

1−ρ4

=σ2
ε

1−ρ4(n+1)

1−ρ4 = 1− ρ4(n+1)

(e). When n→∞ we have

E[Xn]→0
Var[Xn]→ σ2

ε

1−ρ4 = 1

(f). We have

Yn =ρXn +
√

1− ρ2Zn

=ρ[ρYn−1 +
√

1− ρ2Vn] +
√

1− ρ2Zn

=ρ2Yn−1 +
√

1− ρ2[ρVn + Zn]

which has the same structure as for Xn and the results become identical.
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(g). We have

E[XnYn] =E[Xn(ρXn +
√

1− ρ2Zn)]
=ρE[X2

n]
=ρ[1− ρ4n + ρ4nµ2

0]
=ρ+ ρ4n+1(µ2

0 − 1)

(h). We see that E[XnYn]→ ρ

(i). We then see that the limit distribution for Xn, Yn) indeed is the target distribution.

We see that the convergence speed is geometric in ρ2 for the mean and geometric in
ρ4 for the variances and the correlations.

Solution to exercise 41. (a). We have that∫
x
π(x)P (y|x)dx =

∫
x
π(x)[αP1(y|x) + (1− α)P2(y|x)]dx

=α
∫
x
π(x)P1(y|x)dx+ +(1− α)

∫
x
π(x)P2(y|x)dx

=απ(y) + (1− α)π(y) = π(y)

(b). This means that if we have two different MCMC algorithms, both with the same
target distribution, we can combine these to construct a new algorithm where we
first make a draw on which algorithm to use.

Solution to exercise 42. (a). Assume (X, Y ) is the current sample, and we draw new ones
by

X∗ = Z∗ Y ∗ = ρZ∗ +
√

1− ρ2V ∗.

Note that in this case (X∗, Y ∗) do not depend on (X, Y ) at all! This means that we
get immidiate convergence in this case.

(b). If there are components of the full random vector that has a simple marginal distribu-
tion, this should be utilized and can influence the convergence rate considerable. In
most cases it might not be possible to obtain such marginal distributions. However,
in some cases with three sets of variables, we may have that

p(x, y|z) = p(x|z)p(y|x, z)
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where p(x|z) is available. An ordinary Gibbs sampler would be to simulate

x ∼p(x|y, z)
y ∼p(y|x, z)
z ∼p(z|x, y)

which would be to jump between three variables or blocks (if x, y or z are vectors).
With p(x|z) is available, we can simulate through

(x, y) ∼p(x, y|z)
z ∼p(z|x, y)

which only contains two blocks and will typically have much faster convergence. We
can diretly simulate from p(x, y|z) = p(x|z)p(y|x, z) due to the assumptions made.

Solution to exercise 43. (a). We have that

p(y|x,β) =
n∏
i=1

p(yi|xi,β)

=
n∏
i=1

pyii (1− pi)1−yi

=
n∏
i=1

exp(β1 + β2xi)yi
1 exp(β1 + β2)

log p(y|x,β) =
n∑
i=1

[yi(β1 + β2xi)− log(1 exp(β1 + β2)]

U(β) =− log p(β|y,x)
=Const− log p(β)− log p(y|x,β)

=Const + 1
σ2
β

2∑
j=1

β2
j −

n∑
i=1

yi(β1 + β2xi) +
n∑
i=1

log(1 + exp(β1 + β2xi))

H(β,p) =U(β) + 1
2p

Tp

= 1
σ2
β

2∑
j=1

β2
j −

n∑
i=1

yi(β1 + β2xi) +
n∑
i=1

log(1 + exp(β1 + β2xi)) + 1
2

2∑
j=1

p2
j

where we have neglected the constant term since this does not matter.
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