
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK4051 –– Computational statistics

Day of examination: Tuesday May 28 2019.

Examination hours: 14.30 – 18.30.

This problem set consists of 5 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some distributions that will be used:

φ(x;µ, σ) =
1√
2πσ

e−
1

2σ2 (x−µ)2 Gaussian distribution

Φ(x;µ, σ) =

∫ x

−∞
φ(z;µ, σ)dz Cummulative Gaussian

Gamma(x, α, β) =
βα

Γ(α)
xα−1e−βx Gamma distribution

Problem 1

Consider a model

xi ∼N(µ, σ2), i = 1, ..., n

yi =

{
xi if xi > 0;

0 otherwise.

We only observe yi, i = 1, ..., n and we want to estimate µ and σ2.
The histogram below shows n = 1500 observations simulated from such a
model.

(Continued on page 2.)
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(a) Assume that the observations are sorted so that the first n1 observations
are positive while the next n2 = n − n1 observations are zero. Write
down the log-likelihood for θ = (µ, σ2) in this case.

Why is is reasonable to reparametrize to ρ = log(σ2) if one wants to
optimize this function?

(b) The plot below shows results obtained by applying a Newton-like ascent
method and a Nelder-Mead algorithm to optimize the log-likelihood.
The thick lines shows the best values obtained so far during the
iterations. The (almost) vertical red lines correspond to iterations
where the log-likelihood value was very low and outside the limits of the
plot. Iterations here are described as each call to the (log)-likelihood
function.
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Describe shortly these algorithms with a focus on their main differences,
advantages and disadvantages.

(c) Consider now the use of the EM algorithm in this case where the xi’s
can be considered as the complete data.

Write down an expression for the log-likelihood for the complete data.

Assume that you have functions available that can calculate

mp(µ, σ
2) = E[xp|x < 0], p = 1, 2

(Continued on page 3.)
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for x ∼ N(µ, σ2) and for any values of µ and σ2.

Derive updating equations for µ and σ2 expressed by the mp terms.

(d) Calculating the mp values exactly can be a bit problematic, but can be
approximated by Monte Carlo simulation.

Describe how such estimates can be achieved.

Below is a plot showing the values of the log-likelihood at different
iterations of the EM algorithm with Monte Carlo estimates of mp

inserted. Try to explain the behaviour of this modified EM algorithm
(also here the think line corresponds to the best values so far).
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Problem 2

Assume that we have two transition densities P1(z|x) and P2(z|x), each
defining a Markov chain and transitions from x to z. Assume that each of
the transition densities make a target density π(x) invariant, that is∫

x

π(x)Pj(z|x)dx = π(z), j = 1, 2.

Define now a new transition density P (z|x) where the transition densities
are obtained by first drawing y ∼ P1(y|x) and then drawing z ∼ P2(z|y).

(a) Show that also this new transition density keeps π(x) invariant.

(b) Assume now that x = (x1, x2) and that P1 changes x1 by drawing x1
from π(x1|x2) while P2 changes x2 by drawing x2 from π(x2|x1).
Show that both P1 and P2 keep π(x1, x2) invariant.

What does this imply for the systematic scan Gibbs sampler?

(Continued on page 4.)
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(c) Assume now that we want to use a Metropolis-Hasting algorithm, but
use a proposal distribution where we draw x∗1 ∼ π(x1|x2) and put
x∗2 = x2. What is the Metropolis-Hastings ratio in this case?

What does this say about the relationship between the Gibbs sampler
and the Metropolis-Hastings algorithm?

(d) Assume now we have independent data xi ∼ N(µ, σ2) for i = 1, ..., n.
Assume further that we want to perform Bayesian inference on θ =
(µ, τ) where τ = 1/σ2. We assume a prior for θ as

p(θ) ∝ τα−1e−βτ .

Derive the Gibbs sampler algorithm in this case, that is show how µ
and τ are simulated at each step.

Problem 3

Consider a nonlinear regression model

yi = f(xi;β) + εi, εi ∼ N(0, σ2)

where f(x;β) is some non-linear function parametrized by β. We will focus
on the estimation of β. The objective function that we want to minimize is

g(β) =
n∑
i=1

[yi − f(xi;β)]2 + J(β)

where J(β) is some penalty function, e.g. λ
∑

j β
2
j . A gradient based method

for minimizing g(β) is

βt+1 = βt − α∇g(β)

where ∇g(β) is the vector of partial derivatives with respect to the βj’s. We
will focus on a setting where the set of observations {(yi,xi), i = 1, ..., n} is
very large such that computation of ∇g(β) can be very costly.

(a) Describe the stochastic gradient algorithm and also describe why such
an algorithm can be usefull in this setting.

(b) Specify the conditions needed for the learning rate and discuss why
these conditions are reasonable for the algorithm to converge.

(c) A popular non-linear regression model is defined by

f(x;β) =
β1

1 + exp(β2 + β3x)
.

(Continued on page 5.)
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n = 100 000 observations were simulated from this model. The plots
below compares a stochastic gradient algorithm with a deterministic
gradient based method. The x-axis shows the cpu time used while the
y axis shows the corresponding values of the g function. Note that for
the deterministic gradient method, at each iteration α is divided by 2
until a smaller g value is obtained. The different plots are obtained by
using different minibatch sizes.
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Explain what we mean by minibatch sizes.

Specify which plot that corresponds to the largest minibatch size and
which belongs to the smallest minibatch size.


