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Exam in: STK4051 –– Computational statistics
Suggested solutions

Day of examination: Tuesday May 28 2019.

Examination hours: 14.30 – 18.30.

This problem set consists of 5 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

(a) For observations that are We have that are truncated at zero, we have

Pr(yi = 0) = Pr(xi ≤ 0) = Φ(0;µ, σ)

giving

l(θ) =− n1

2
log(2π)− n1

2
log(σ2)− 1

2σ2

n1∑
i=1

(yi − µ)2 + n2 log(Φ(0;µ, σ))

Since we have the constraint σ2 > 0, reparametrizing to ρ = log(σ2)
gives a non-constrained optimization problem.

(b) Newton-like methods:

θt+1 = θt − [M t]−1l′(θt)

where M t is a matrix approximating the Hessian. Ascent algorithms
use simple forms of M t, e.g. the identity matrix. This method usually
converge fast (if it converge) but require computation of gradients.

Nelder-Mead: With θ 2-dimensional, we start with 3 values of θ. These
3 values are dynamically altered by replacing the worst value with a
better one, defined through a search line going through the worst value
and the average of the other values. The worst value is then updated
to a better (best?) value along this line. The algorithm is performing
these steps iteratively until some stopping criterion is achieved. This
method does not need the derivatives and is typically quite robust.

(Continued on page 2.)



Exam in STK4051, Tuesday May 28 2019. Page 2

(c) We have the complete -loglikelihood

lc(θ) =− n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2

We then get

Q(θ,θt) =− n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

E[(xi − µ)2|yi,θt]

=− n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n1∑
i=1

(yi − µ)2−

n2

2σ2
E[(xi − µ)2|xi < 0,θt]

=− n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n1∑
i=1

(yi − µ)2−

n2

2σ2
[E[x2

i |xi < 0,θt]− 2E[xi|xi < 0,θt]µ+ µ2]

=− n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n1∑
i=1

(yi − µ)2−

n2

2σ2
[m2(µt, (σ2)t)− 2m1(µt, (σ2)t)µ+ µ2]

Taking derivatives, we get

∂

∂µ
Q(θ,θt) =

1

σ2

n1∑
i=1

(yi − µ) +
n2

σ2
[m1(µt, (σ2)t)− µ]

giving

µt+1 =

∑n1

i=1 yi + n2m1(µt, (σ2)t)

n

Further,

∂

∂σ2
Q(θ,θt) =− n

2σ2
+

1

2σ4

n1∑
i=1

(yi − µ)2+

n2

2σ4
[m2(µt, (σ2)t)− 2m1(µt, (σ2)t)µ+ µ2]

giving

(σ2)t+1 =
1

n
[

n1∑
i=1

(yi − µt+1)2 + n2[m2(µt, (σ2)t)− 2m1(µt, (σ2)t)µt+1 + (µt+1)2]]

(Continued on page 3.)
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(d) We can obtain Monte Carlo estimates of the mp’s by simulating
xj ∼ N(µt, (σ2)t), j = 1, ..., N , discard those values for which xj > 0
and then take the means of xj and x2

j of the remaining samples.

Due to the stochasticity of the Monte Carlo estimates, the properties of
the EM algorithm is now violated giving jumps up and down without
stabilization.

Problem 2

(a) We have

P (z|x) =

∫
y

P1(y|x)P2(z|y)dy∫
x

π(x)P (z|x)dx =

∫
x

π(x)

∫
y

P1(y|x)P2(z|y)dydx

=

∫
y

P2(z|y)

∫
x

π(x)P1(y|x)dxdy

=

∫
y

P2(z|y)π(y)dy

=π(z)

showing the result.

(b) Assume the current value is x = (x1, x2) while we simulate a new value
x∗ = (x∗1, x2) by P1. Then

π(x)P1(x∗|x) =π(x1, x2)π(x∗1|x2) = π(x2)π(x1|x2)π(x∗1|x2)

=π(x1|x2)π(x∗1, x2) = π(x∗)P1(x|x∗)

showing that detailed balance is obained for P1. We get similar results
for P2.

The systematic Gibbs sampler then satisfies the general properties of
P1 and P2 considered in (a) and this shows that the systematic scan
Gibbs sampler keeps the target distribution invariant.

(c) We have in this case that

R =
π(x∗)π(x1|x2)

π(x)π(x∗1|x2)
=
π(x∗1, x2)π(x1|x2)

π(x1, x2)π(x∗1|x2)

=
π(x∗1|x2)π(x2)π(x1|x2)

π(x1|x2)π(x2)π(x∗1|x2)
= 1

showing that with this proposal we always accept and actually end up
with a Gibbs sampler step.

Gibbs sampling is therefore a special case of Metropolis-Hastings.

(Continued on page 4.)
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(d) We have that

π(µ|x, τ) ∝π(µ, τ)p(x|µ, τ)

∝
n∏
i=1

e−0.5τ(xi−µ)2

∝e−0.5τ(
∑n

i=1 x
2
i−2µ

∑n
i=1 xi+nµ

2)

∝e−0.5nτ(µ2−µx̄)

∝e−0.5nτ(µ−x̄)2 ∝ N(x̄, (nτ)−1)

Similarly

π(τ |x, µ) ∝π(µ, τ)p(x|µ, τ)

∝τα−1e−βτ
n∏
i=1

τ 1/2e−0.5τ(xi−µ)2

∝τα+0.5n−1e−τ [β+
∑n

i=1(xi−µ)2]

∝Gamma(α + 0.5n, β +
n∑
i=1

(xi − µ)2)

showing that we can switch between sampling µ from a Gaussian
distribution and τ from a Gamma distribution.

Problem 3

(a) In the stochastic gradient algorithm we replace ∇g(β) by an unbiased
estimate. By doing so, we also need to change the learning rate to αt
which needs spesific properties in order for the algorithm to converge.

Due to that an estimate of the gradient can be much cheaper to
calculate, we can benefit from this in this setting due to the large
number of observations.

(b) The conditions needed are

αt > 0 (A-1)
∞∑
t=2

αt
α1 + · · ·+ αt−1

=∞ (A-2)

∞∑
t=1

α2
t <∞ (A-3)

The first is reasonable since we want to move in the right direction.
The second is reasonable since we do not want to move in too small
steps, while the last is reasonable since if the learning rates becomes
too large, the variance of the cumulative gradients will explode.

(Continued on page 5.)
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(c) By a minibatch we mean exactly to draw a random subsample from
{1, ..., n} of size m. Larger m decrease variability but increase
computational effort. Since the variability is largest in the first plot,
this should correspond to the smallest m, with increasing order.


