
The Stochastic gradient algorithm

Geir Storvik

May 8, 2019

1 Introduction

This note discusses stochastic gradient algorithms. Although having ex-
isted for many years (Robbins and Monro, 1951, reprinted 1985), the
algorithm has recived renewed attention due to its importance in fit-
ting deep neural networks. A thourough discussion of the algorithm is
given in Bottou et al. (2018) while a broader discussion on stochastic
optimization methods in general is given in Spall (2005).

2 The main algorithm

Suppose our aim is to maximize some function F (θ) with respect to θ.
Typically, our function of interest will be some empirical risk:

F (θ) = 1
n

n∑
i=1

fi(θ)

with many possible options for fi(θ), eg

fi(θ) =


(ŷi − yi)2 Least squares;
I(ŷi 6= yi) Classification error;
− log f(yi;θ) log-likelihood.

Note that ŷi will depend on θ as well as several covariates, although
this has not been explicitly included in the notation above. Also some
penalized versions of the empirical risk is possible:

F (θ) = 1
n

n∑
i=1

fi(θ) + J(θ)

Although typically we will consideder some function of empircal risk, we
will see that also expected risk is relevant to consider:

F (θ) = E[f(θ; ε)].

1

Algorithm 1 Stochastic Gradient algorithm
1: for t = 1, 2, ... do
2: Simulate the stochastic gradient g(θt; ξt)
3: Choose a stepsize αt
4: Update the new value by θt+1 ← θt − αtM−1

t ĝ(θt)
5: end for

Here ε is some random vector used for generating an observation.
If F (·) is nice and smooth, a necessary requirement for the maximum

point θ∗ is then that

g(θ∗) = ∂

∂θ
F (θ∗) = 0 (1)

The ordinary gradient ascient methods is based on the iterative scheme

θt+1 =θt −M−1
t g(θt)

where Mt is some positive definite matrix, serving as a scaling matrix.
The simplest choise would be Mt = I. A main problem in many complex
settings is that this gradient might be difficult to compute. The stochastic
gradient algorithm replaces the gradient by an estimate instead:

θt+1 =θt − αtM−1
t Z(θt; ξt) (2)

where we describe the estimate of the gradient by Z(θt; ξt), emphasizing
the stochastic nature through the random vector ξt. A class of possibil-
ities are given by

Z(θt; ξt) =

 1
nt

∑
i∈St

∇fi(θt)]

 (3)

where St ⊂ {1, ..., n} and nt = |St| gives the number of observations to
base the estimate of the gradient on. Low values of nt gives high speed
in computation but large variance, typically requiring many iterations.
The full procedure is given in Algorithm 1. Note that we now obtain a
stochastic sequence {θt}.

3 Example

Consider a logistic regression setting where

Yi ∼Binomial(1, p(xi)), i = 1, ..., n

p(x) = exp(θ0 + θ1xi)
1 + exp(θ0 + θ1xi)

2

Code 1 R code for logistic regression example.

#Simulate data
set . seed (34534)
n = 10000
x = rnorm(n)
theta = c (0 . 1 , 2)
p = exp(theta [1]+ theta [2] ∗x)/(1+exp(theta [1]+ theta [2] ∗x))
y = rbinom(n , 1 , prob=p)

#I n i t i a l i z a t i o n
b = c (0 , 1) #I n i t i a l va lue
N. i t = 1000 #Number o f i t e r a t i o n s
k = 10 #Number o f samples f o r e s t i m a t i n g g r a d i e n t
#SG−l oop
for (i t in 1 :N. i t)
{

i = sample (1 : n , k)
alpha = 10/ i t
p . i = exp(b [1]+b [2] ∗x [i]) /(1+exp(b [1]+b [2] ∗x [i]))
g = colMeans (cbind (y [i]−p . i , (y [i]−p . i)∗x [i]))
b = b + alpha∗g

}

with n large. Our objective function is to maximize

F (θ) =
n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

=
n∑
i=1

[yi(θ0 + θ1xi)− log(1 + exp(θ0 + θ1xi))]

Defining

fi(θ) =yi(θ0 + θ1xi)− log(1 + exp(θ0 + θ1xi))

we have

∇fi(θ) =

 yi − exp(θ0+θ1xi)
1+exp(θ0+θ1xi)

[yi − exp(θ0+θ1xi)
1+exp(θ0+θ1xi)]xi


Code 1 shows R-code for performing stocahstic gradients on this example.
Figure 1 shows the convergence of the stockastic gradient algorithms for
different choices of nt in the gradient estimate (3). We see that for nt = 1
the algorithm is slow to convergence, probably due to that the variance of
the gradient estimate is too large. For nt = 10 however the convergence
is very fast and clearly beats the standard gradient ascent method.

3

Time

bs
eq

[,
2]

0 200 400 600 800 1000

1.
0

1.
5

2.
0

2.
5

3.
0

Opt
GD
SGD,k=1
SGD,k=10

Figure 1: {β2} at different iterations for standard gradient ascent and stochastic gradients
using nt = 1 and nt = 10. For all curves the x-axis is the seconds needed for obtaining the
corresponding β2 values.

4 Theoretical results

Definition 1. If limt→∞ θ
t = θ∗ in probability, irrespective of any arbi-

trary initival value θ(0), we call the procedure consistent. Here, conver-
gence in probability means that for any ε > 0,

lim
t→∞

Pr(|θt − θ∗| > ε) = 0

We will show that the stochastic gradient algorithm indeed converge
in probability (under suitable conditions). We will only give results and
proofs in some simplifying settings, following mainly Robbins and Monro
(1951) and only when θ is univariate. More general proofs are given in
e.g. Bottou et al. (2018).

We will start with the following result:

Lemma 1. Define

bt = E[(θt − θ∗)2].

If limt→∞bt = 0, then {θt} is consistent.

Proof. Defining pt(·) to be the density of θt, we have that

Pr(|θt − θ∗| > ε) =
∫
z
I[(z − θ∗)2 > ε2]pt(z)dz

≤
∫
z

(z−θ∗)2

ε2 pt(z)dz

= 1
ε2

∫
z
(z − θ∗)2pt(z)dz = 1

ε2 bt → 0

proving the result.

4

The main requirements needed for proving convergence can be divided
into requirements on the sequence {αt} and on the function g(z). We
will consider the following assumptions on {αt}:

αt >0 (A-1)
∞∑
t=2

αt
α1 + · · ·+ αt−1

=∞ (A-2)

∞∑
t=1

α2
t <∞ (A-3)

Note that (A-2) implies
∑∞
t=1 αt =∞.

Requirements on the function g(z):

∃δ ≥ 0 such that g(x) ≤ −δ for x < θ∗ and g(x) ≥ δ for x > θ∗.
(A-4)

E[Z(θ;φ)] = g(θ) and Pr(|Z(θ;φ)| < C) = 1 (A-5)

The constraint |Z(θ; ξ)| < C is included to simplify the proof. More
general results are available.

Theorem 1. Assume (A-1), (A-3), (A-4) and (A-5). Then the sequence

θt+1 =θt − αtZ(θt;φt) (4)

will converge in probability.

Remark: Note that this result only gives convergence to some value,
not necessarily to the optimal value. This will be proved in the following
results were also (A-3) will be assumed. In the following we will simplify
the notation somewhat in denoting Z(θt; ξt) by Zt.

Proof. We have

bt+1 =E[(θt+1 − θ∗)2]
=E[E[(θt+1 − θ∗)2|θt]]
=E[E[(θt − αtZt − θ∗)2|θt]]
=E[(θt − θ∗)2 + α2

tE[Z2
t |θt]− 2αt(θt − θ∗)E[Zt|θt]]

=bt + α2
tE[Z2

t]− 2αtE[(θt − θ∗)g(θt)].

Defining

dt = E[(θt − θ∗)g(θt)], et = E[Z2
t],

5

we get

bt+1 − bt = α2
t et − 2αtdt.

which again results in that (by summing the equation above over t)

bt+1 = b1 +
t∑

s=1
αses − 2

t∑
s=1

αsds. (5)

From (A-4) we have that dt ≥ 0. Since bt+1 ≥ 0 it follows from (5) that

t∑
s=1

αsds = 1
2

[
b1 +

t∑
s=1

α2
ses − bt+1

]
≤ 1

2

[
b1 +

∞∑
s=1

α2
ses

]
.

From |Z(θ; ξ)| ≤ C we have

∞∑
s=1

α2
ses ≤ C2

∞∑
s=1

α2
s <∞

proving that both terms in (5), and thereby {bt}, converges.

We now have proven that the series of parameter estimates converges,
but not that it converges to the right value. We will first prove the
following lemma:

Lemma 2. Assume (A-1), (A-3), (A-4) and (A-5). Assume {kt} is a
sequence of nonnegative constants satisfying

ktbt ≤ dt,
∞∑
t=1

αtkt =∞ (6)

Then limt→∞ bt = 0.

Proof. We have that
∞∑
t=1

αtktbt ≤
∞∑
t=1

αtdt <∞

from the proof of Theorem 1. From the second part of (6) there must be
an infinite number of bt’s for which bt < ε for any value of ε. Since we
have already shown that limt→∞ bt exists, this shows that the limit has
to be zero.

The following lemma utilize Lemma 2 to construct criteria which can
be more easily checked.

6

Lemma 3. Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume for
some constant δ > 0 that

inf
z∈[θ−At,θ+At]

[
g(z)
z−θ

]
≥ δ

At
for t > N. (7)

where

At = |θ1 − θ|+ C(αt + · · ·+ αt−1). (8)

Then limt→∞ bt = 0.

Proof. We have that

θt = θ1 −
t−1∑
s=1

αsZs

so that

|θt − θ∗| =|θ1 − θ∗ −
t−1∑
s=1

αsZs|

≤|θ1 − θ∗|+
t−1∑
s=1

αs|Zs| ≤ |θ1 − θ∗|+
t−1∑
s=1

αsC = At

where the second inequality is with probability 1. Now define

kt = inf
z∈[θ∗−At,θ∗+At]

[
g(z)
z−θ∗

]
.

From (A-4) we have that kt ≥ 0. Further, defining pt(·) to be the density
for Zt, we have

ktbt =ktE[(Zt − θ∗)2] =
∫
z
kt(z − θ∗)2pt(z)dz

=
∫
z∈At

kt(z − θ∗)2pt(z)dz ≤
∫
z∈At

g(z)
z−θ∗ (z − θ∗)2pt(z)dz

=
∫
z∈At

g(z)(z − θ∗)pt(z)dz = E[g(Zt)(Zt − θ∗)] = dt

which shows the first requirement in (6).
By (A-2),

∑∞
t=1 αt =∞ which implies that for t larger than some T

2C(α1 + · · ·+ αt−1) = At + C(α1 + · · ·+ αt−1)− |θ1 − θ| ≥ At.

This results in that
∞∑
t=1

αtkt ≥
∞∑

t=min{N,T}
αtkt ≥

∞∑
t=min{N,T}

αtδ

At

≥
∞∑

t=min{N,T}

αtδ

2C(αt + · · ·+ αt−1) =∞

showing the second requirement in (6).

7

We are now ready to state the following result:

Theorem 2. Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume
further δ > 0 in (A-4). Then limt→∞ bt = 0.

Proof. We have for any z ∈ [θ∗ −An, θ∗ +An]

g(z)
z − θ∗

≥ δ

|z − θ∗|
≥ δ

At

implying that (7) is fulfilled which by Lemma 3 imply the result.

An alternative to Theorem 2 is the following:

Theorem 3. Assume (A-1), (A-2), (A-3) and (A-5). Assume further

g(z) is nondecreasing; (9)
g(θ∗) =0; (10)
g′(θ∗) >0. (11)

Then limt→∞ bt = 0.

Proof. Since g′(θ∗) = limx→θ∗
g(x)−g(θ∗)
x−θ∗ , we have that there exists some

function ε(t) with limt→0 ε(t) = 0 and

g(x)
x− θ∗

= g′(θ∗) + ε(x− θ∗)

giving

ε(x− θ∗) = g(x)
x− θ∗

− g′(θ∗) ≥ −1
2g
′(θ∗)

for |x| < δ and δ small enough. Thereby

g(x)
x− θ∗

≥ 1
2g
′(θ∗), for |x− θ∗| ≥ δ.

Hense for θ∗ + δ ≤ θ∗ +At, since g(z) is nondecreasing

g(x)
x− θ∗

≥ g(x+ δ)
At

≥ δg′(θ∗)
2At

while for θ∗ −At ≤ x ≤ θ∗ − δ

g(x)
x− θ∗

≥ −g(x)
θ∗ − x

≥ −g(θ − δ)
At

≥ δg′(θ∗)
2At

.

We may assume without generality that δ/At ≤ 1 giving

g(x)
x− θ∗

≥ δg′(θ∗)
2At

for 0 < |x− θ∗| ≤ At

showing that (7) is fulfilled.

8

4.1 SG for expected risk

As mentioned in the introduction, stochastic gradients can also be used
to estimate expected risk. Assume now data yt is sampled sequentially
and perform the updating

θt+1 =θt − αtM−1
t ∇ft+1(θt)

ft(θ) =− log f(yt;θ)

Then θt will converge towards the minimum of F (θ)) = E[f(θ, ε)]!

5 Neural network

Consider now a neural network model with one latent layer:

zim =h(αTmxi), m = 1, ...,M (12)
Ti =β0 + βT zi (13)
yi =g(Ti) + εi. (14)

Note that this is equivalent to

yi =f(xi) + εi

where

f(xi) =g(β0 +
M∑
m=1

βmh(
p∑
j=1

αmjxij)),

showing that it essentially is a (complex) parametric model. For regres-
sion, common choices for the h(·) function are

h(x) = 1
1 + exp(−x) sigmoid funksjonen;

g(t) =t identity function.

For classification, the model is slightly modified to

zim =h(αTmxi), m = 1, ...,M (15)
Ti,k =β0,k + βTk zi (16)

Pr(Yi = k) =pi,k = gk(Ti) (17)

where typically the softmax function is used:

gk(T) = exp(Tk)∑K
l=1 exp(Tl)

.

9

x1 x2 x3 xp−1 xp

z1 z2 z3 zM−1 zM

y

Figure 2: Visualisation of neural network with one hidden layer.

5.1 Estimation of parameters

In general there will be many parameters to be estimated. For the re-
gression setting these are

θ = {αmj ,m = 1, ...,M, j = 1, .., p, βm,m = 0, ...,M}

A possible estimation criterion in this case is to minimize

Q(θ) =
n∑
i=1

yi − g
β0 +

M∑
m=1

βmh(
p∑
j=1

αmjxij)

2

+

λ1

M∑
m=1

p∑
j=1

α2
mj + λ2

M∑
m=1

β2
m

where the first term is a fit to data while the two other terms are penalty
terms included to avoid overfitting. If a gradient descent algorithm was
to be used, derivatives, involving all data points, would have to be eval-

10

uated. Assuming h(·) and g(·) are smooth and differentiable, we have

∂Q(θ)
βm∗

=− 2
n∑
i=1

(yi − f(xi))
∂f(xi)
∂βm∗

+ 2λ2βm∗

∂f(xi)
∂βm∗

=g′(β0 +
M∑
m=1

βmh(
p∑
j=1

αmjxij))h(
p∑
j=1

αm∗jxij)

=g′(Ti)zim∗

∂Q(θ)
∂αm∗j∗

=− 2
n∑
i=1

(yi − f(xi))
∂f(xi)
∂αm∗j∗

+ 2λ1αm∗j∗

∂f(xi)
∂αm∗j∗

=g′(β0 +
M∑
m=1

βmh(
p∑
j=1

αmjxij))βm∗h′(
p∑
j=1

αm∗jxij)xij∗

=g′(Ti)βm∗h′(αTm∗xi)xij∗ .

Note that calculations of these quantities (for a given set of parameter
values) requires a forward loop for calculation of latent variables and
a backward loop for calculation of derivatives. The calculation of the
derivatives with this procedure is called the back-propagation algorithm.

A gradient descent algorithm will interatively update the parameters
through

βt+1
m =βtm − γt

∂Q(θ)
βm

∣∣∣∣
θ=θt

(18)

αt+1
mj =αtmj − γt

∂Q(θ)
αmj

∣∣∣∣∣
θ=θt

(19)

until convergence to a (local) optimum is reached.
The tuning parameter γt usually called the learning-rate. It is typi-

cally constant, but can be a sequence converging slowly to zero. One can
can increase convergence speed by using second derivatives.

5.2 Stochastic gradient and neural nets

Q and their derivatives require a sum of n terms. One can use a stochastic
version by sampling randomly a subset of {1, ..., n} which in the machine
learning literature is called mini-batching. In addition to make the cal-
culations much faster, LeCun et al. (2012) state that it also often gives
better solutions and in a setting where observations are ordered in time
also can be used to track changes.

In general, optimization will be difficult due to the large number of
parameters. Some simplification can be achieved by utilizing some of the
structure involved. Assume a regression setting with g(t) = t. For a given
set of αmj ’s, the estimation of the βm’s corresponds to a standard linear

11

2000 4000 6000 8000 10000

10
03

0
10

05
0

10
07

0
10

09
0

Iteration

Q

Figure 3: Q at different iterations for the stochastic gradients using nt = 5 based on simulated
data with n = 10 000 observations. See the script Stoch grad NN.R for details.

regression fit with the zim’s as explanatory variables (which are given
when the αmj ’s are given). This is an example of dimension reduction
where the main problem then is reduced to finding optimal αmj ’s.

On the course web-page there is a script, Stoch grad NN.R, which
performs fitting to a neural network on simulated data where the algo-
rithm is hard-coded. Figure 3 show that the objective function Q nicely
decreases as iterations evolves (only every 1000 iterations are shown).

There exists many routines available for fitting neural network mod-
els. In R there are neuralnetwork within the ANN2 package, mlp within
the RSNNS package, nnet within the nnet package. Typically there are
different trickes applied within the implementations. One such trick is
the momentum method in which case the gradient is dynamically up-
dated by assuming the gradient is not changing much from one iteration
to another:

vt+1 = γvt + α∇F (θt)
θt+1 = θt − vt+1

Another trick is adaptive learning rates

θt+1 = θt − α√
||∇F (θt)||2 + ε

∇F (θt)

See LeCun et al. (2012) for further details on this.
The script ANN2 zip.R at the course web-page shows the use of the

ANN2 package on the ZIP code data (images of handwritten digits). This
is a classification task and the simple neural network model described
above was in this case extended to include 5 layers with 256, 15, 15,
15 and 10 nodes on the different layers. The fitting of the model was
somewhat time-consuming. However, the confussion table below shows
that the predictions on a test set was quite successfull with an overall

12

error rate of 8.2%.
Prediced class

0 1 2 3 4 5 6 7 8 9
Tr

ue
cl

as
s

0 348 0 1 1 1 0 5 1 1 1
1 0 253 1 1 2 0 4 0 3 0
2 3 0 169 7 4 2 5 3 5 0
3 1 0 6 145 1 10 0 0 2 1
4 2 1 6 1 180 1 3 1 2 3
5 4 0 0 7 1 141 1 1 4 1
6 2 0 2 0 2 4 158 0 2 0
7 0 0 1 1 5 0 0 134 0 6
8 6 0 5 6 2 1 1 1 142 2
9 0 0 0 0 2 0 0 2 1 172

6 SG and dependent data

Consider now spatial data colleced at different geographical sites s1,, sn.
We will assume a model where the vector Y = (Y (s1), ..., Y (sm))T is
multivariate Gaussian with

E[Y (si) =µ
Var[Y (si)] =σ2 + τ2

Cov[Y (si), Y (sj)] =σ2r(||si − sj ||;φ)

where r(d;φ) is a function that typically decrease with distance d (it do
have some restrictions in that the final covariance matrix must be positive
semi-definite). The extra term τ2 is usually describing observation noise
which is assumed to be independent. We can write this in matrix form
as

Y ∼ N(µ,Σ)

where µ = µI, Σ = σ2R+ τ 2I and Rij = r(||si − sj ||;φ).
The observation set Y is a realisation of a process defined continu-

ously in a space S. The log-likelihood with θ = (µ, σ2, τ2,φ) is given
by

l(θ) = −n2 log 2π − 1
2 log(|Σ|)− 1

2(y − µ)TΣ−1(y − µ)

In general, the computational burden is O(n3), which can be problematic
for large n.

6.1 ML and Kullback-Leibler divergence

The use of stochastic gradients is more complex in this case due to the
dependence between the observations. Obtaining an unbiased estimate

13

of the gradient through sub-sampling then become more problematic.
A possible approach in this case is then to go one step backwards and
rather than using maximum likelihood as criterion for estimation, the
criterion now will be to select a parametric model fθ(y) which is as close
as possible to the true distribution g(y). We then need to define what we
mean about close, which we will do through Kullback-Leibler divergence:

KL(fθ, g) =
∫

log
(
g(y)
fθ(y)

)
g(y)dy

=
∫

log(g(y))g(y)dy −
∫

log(fθ(y))g(y)dy ≥ 0

Minimizing the Kullback-Leibler divergence then becomes equivalent to
maximizing

∫
log(fθ(y))g(y)dy. A problem however is that g(y) is un-

known.
For IID data on can approximate g(y) by the empirical distribution

ĝ(y) : Pr(Y = yi) = 1
n . In that case this results in maximizing

n∑
i=1

1
n

log(fθ(yi)) = 1
n
`(θ)

which corresponds to maximizing the log-likelihood. This gives an alter-
native motivation for the maximum likelihood approach.

For spatial data we have (now also including the geographical posi-
tions as part of the observations)

KL(fθ, g) =
∫ ∫

log
(
g(y|s)
fθ(y|s)

)
g(y|s)g(s)dyds

=
∫ ∫

log(g(y|s))g(y|s)g(s)dyds−∫ ∫
log(fθ(y|s))g(y|s)g(s)dyds

It is not obvious how to approximate g(y, s) = g(y|s)g(s) in this case.
We have in this case one set of observations y. We can approximate

g(y, s) by giving probability 1 to this observation set. This leads to the
maximum (log-)likelihood approach but has the computational burden
mentioned earlier. It also has a problem in a poor description of g,
leading to that ML estimate may not behave well!

Liang et al. (2013) proposed the following idea: Approximate KL by

K̂L(fθ, g) =C − 1(n
m

) (n
m)∑
k=1

log(fθ(yk|sk))

14

where (yk, sk) is a subset of (y, s) of size m < n. Then find θ as the
solution of

∂

∂θ
K̂L(fθ, g) =C − 1(n

m

) (n
m)∑
k=1

H(θ,yk, sk)

where

H(θ,yk, sk) = ∂

∂θ
log(fθ(yk|sk))

by the stochastic gradient algorithm, which in this case means to approx-
imate the large sum by a (small) set of subsets (yk, sk).

6.2 Example

Assume r(||si − sj ||;φ) = exp(−(||si − sj ||/φ). Then

Hµ(θ,yk, sk) =1TmΣ−1
k (yk − µIm)

Hσ2(θ,yk, sk) =− 1
2tr(Σ−1

i Rk) + 1
2(yk − µIm)TΣ−1

i RiΣ−1
i (yk − µIm)

Hτ2(θ,yi, sk) =− 1
2tr(Σ−1

k) + 1
2(yk − µIm)TΣ−2

k (yi − µIm)

Hφ(θ,yk, sk) =− 1
2tr(Σ−1

i

dRi

dφ
) + 1

2(yk − µIm)TΣ−1
k

dRi

dφ
Σ−1
k (yk − µIm)

Σk ={cov(Y (sk,i)− Y (sk,j)}
Rk ={exp(−(||sk,i − sk,j ||/φ)}
dRi

dφ
={||sk,i − sk,j ||/φ2} exp(−(||sk,i − sk,j ||/φ)

The R script Geostat SG.R contains an example of the use of stochas-
tic gradients on this example using simulated data. Subsample sizes of
m = 5, 10 and 20 was used. Figure 4 shows the log-likelihood values ob-
tained for 10 repetitions of the algorithm. For too small values of m, the
variability seems to be too high, while m = 20 give quite stable results.

References

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-
scale machine learning. SIAM Review, 60(2):223–311, 2018.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

15

●

●

●

5 10 20−
17

00
−

16
00

−
15

00

m

lo
g−

lik
el

ih
oo

d

Figure 4: Boxplot of values of ` obtained for m = 5, 10 and 20 through 10 repetitions of the
stochastic gradient algorithm. For m = 5 a very small value of -9757.242 obtained at one of
the runs have been suppressed.

F. Liang, Y. Cheng, Q. Song, J. Park, and P. Yang. A resampling-based
stochastic approximation method for analysis of large geostatistical
data. Journal of the American Statistical Association, 108(501):325–
339, 2013.

H. Robbins and S. Monro. A Stochastic Approximation Method. Annals
Math. Statistics, 22:400–407, 1951.

J. C. Spall. Introduction to stochastic search and optimization: estima-
tion, simulation, and control, volume 65. John Wiley & Sons, 2005.

16

	Introduction
	The main algorithm
	Example
	Theoretical results
	SG for expected risk

	Neural network
	Estimation of parameters
	Stochastic gradient and neural nets

	SG and dependent data
	ML and Kullback-Leibler divergence
	Example

