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Markov chain Monte Carlo

@ Assume now simulating from f(X) is difficult directly
e f(-) complicated
e X high-dimensional

@ Markov chain Monte Carlo:

o Generates {X(} sequentially
e Markov structure: X() ~ P(-|X(t=1))

@ Aim now:
o The distribution of X() converges to f(-) as t increases
o Ameme = N1 N, h(X(M) converges towards u = E'[h(X)] as t increases
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Markov chain theory - discrete case

@ Assume {X"} is a Markov chain where X is a discrete random variable
Pr(X® = yIX"Y = x) = P(ylx)

giving the transition probabilities
@ Assume the chain is

e irreducible: It is possible to move from any x to any y in a finite number of steps
e reccurent: The chain will visit any state infinitely often.
@ aperiodic: Does not go in cycles

@ Then there exists a unique distribution f(x) such that
Jim Pr(X® = y|X© = x) =f(y)
—00

fiveme —u = E'[X]

@ How to find f(-) (the stationary distribution): Solve

f(y) = D_ f()P(yIx)

@ Our situation: We have f(y), want to find P(y|x)
o Note: Many possible P(y|x)!
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Markov chain theory - general setting

@ Assume {X(} is a Markov chain where X ¢ S

Pr(X® e AX' D = x) = P(x, A) = | P(y[x)dy
yeA

giving the transition densities
@ Assume the chain is
e irreducible: It is possible to move from any x to any y in a finite number of steps
e reccurent: The chain will visit any A C S infinitely often.
@ aperiodic: Do not go in cycles

@ Then there exists a distribution f(x) such that
Jim Pr(X® e AX©® = x) /f y)dy

Ameme — 1

@ How to find f(-) (the stationary distribution): Solve

«wzlmwmmw

@ Our situation: We have f(-), want to find P(y|x)
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Detailed balance

@ The task: Find a transition probability/density P(y|x) satisfying

(y) = / F(x)P(y|x)dx

Can in general be a difficult criterion to check
@ Sufficient criterion:

f(x)P(y|x) = f(y)P(x|y) Detailed balance
We then have
| fo0Ptyixax = [ fy)Pexiy)ax
~(y) | P(xiy)ox = f(y)
since P(x|y) is, for any given y, a density wrt x.

@ Note: For y = x, detailed balance always fulfilled, only necessary to check for
y # X
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Metropolis-Hastings algorithms

P(y|x) defined through an algorithm:
@ Sample a candidate value X* from a proposal distribution g(:|x).
@ Compute the Metropolis-Hastings ratio

f(X*)g(xX)

X = 09060
© Put
X*  with probability min{1, R(x, X*)}
- {x otherwise
@ Fory # x:

. f(v)g(xly)}
P(y|x) = X 1, =27
(vix) = aybe) min { 1, 09N
@ Note: P(x|x) somewhat difficult to evaluate in this case.
@ Detailed balance (?)

100P(y) =gty min {1, 1T Y
= min{/(0a(ylx), F(¥)g(xly)}

—#(y)g(xly) min { ZIE 11— 11y)Pct)
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M-H and unknown constant

@ Assume now f(x) = ¢ - q(x) with ¢ unknown.

Rx,y) = [IXIY) _ c-ay)a(xly) _ a(y)g(xly)
' fx)g(yx) ~ c-q(x)g(yx) — q(x)g(yx)

@ Do not depend on c!
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Random walk chains

@ Popular choice of proposal distribution:
X' =x+¢
@ g(x*|x) = h(x* — x)
@ Popular choices: Uniform, Gaussian, t-distribution
@ Note: If h(-) is symmetric, g(x*|x) = g(x|x*) and

Fx)g(x|x™) _ f(x')
fx)g(x:x) — f(x)

R(x,x") =
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@ Assume f(x) oc exp(—|x[3/3)
@ Proposal distribution N(x, 1)
@ Example_MH_cubic.R
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Independent chains

@ Assume g(x*|x) = g(x*). Then

f(x*)
= HX)a(x) _ g6
A = xg00) ~ 12

fraction of importance weights!
@ Behave very much like importance sampling and SIR
@ Difficult to specify g(x) for high-dimensional problems
@ Theoretical properties easier to evaluate than for random walk versions.
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M-H and multivariate settings

o X=(X1,..., Xp)
@ Typical in this case: Only change one or a few components at a time.
@ Choose index j (randomly)
@ Sample X* ~ g;(-|x), put X; = Xi for k # j
© Compute
o _ T(X")g(x|X")
Ao = 00906 0
Q Put
X*  with probability min{1, R(x, X*)}
- {x otherwise
@ Can show that this version also satisfies detailed balance
@ Can even go through indexes systematic
@ Should then consider the whole loop through all components as one iteration
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o Assume f(x) o exp(—||x|[*/3) = exp(—[I[x|[*]*?/3) =
@ Proposal distribution

@ j ~ Uniform[1,2, ..., p]

Q x' ~ N(x.1)

@ Example_MH_cubic_multivariate.R
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Reparametrization

@ Sometimes easier to transform variables to another scale Y = h(X)
@ Two approaches (use h'(-) = h(-) so X = h(Y))
o Reparametrize Y = A(X), simulate from fy(y) instead
fy(y) =t (h()IH (y)
oy _ (WG )IR (™) lgy (v1y™)
Ry, y*) =
V) = I ey (1)
_KXCOIN()lgy(vly™)
(R (V)lgy (y*1y)

@ Run the MCMC in X-space, but construct proposal through X = h(Y),
9x(x*[x) =gy (h(x*) I A(x))IH (x*)]
oy _ Ix(x*)gy (h(x)[h(x*))|F (x)|
R(x, = = - =
G = 00y (B RO ()
_ O gy ly I ()
x()gy (VI (V)
since F'(x) = 1/H (y)

Geir Storvik
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Gibbs sampling

@ Assume X = (X1, ..., Xp)

@ Aim: Simulate X ~ f(x)

@ Gibbs sampling:
@ Select starting values x(®) and set t = 0
@ Generate, in turn

X1(H1) ~f(xq |xg), xa(t), xl(,t))

X2(t+1) ~f(x2|x1““), Xg(,t), X;(Jt))

X(+1 ~f(x, \x1(t+1),...,x(t+1),x,gt))

o p—2
XS et Olx{ Y, )

@ Increment t and go to step 2.
@ Completion of step 2 is called a cycle
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Example - Mixture distribution

@ Mixture distribution
Y ~ f(y) =0¢(y. po.0.5) + (1 = 8)d(y. #1,0.5), po =7, 1 =10

@ Prior § ~ Uniform([0, 1]
@ Aim: Simulate 6 ~ p(&|y1, ..., Yn)

p@Iy1, ... yn) o [ [[66(yi. 7.0.5) + (1 — 8)$(yi, 10,0.5)]

i=1

Difficult to simulate from directly
@ Note, can write model for Y by

Pr(Z =2z) =6"*(1 - §)7, z=0,1
Y|Z =2z ~¢(y. uz 0.5), wo =7, =10

@ Note:

n
P31V, oo Yo 21, e 20) o [ [ 617%(1 = 8)7 (¥, . 0.5)

i=1

o™ R A (] — )= A

n n
xBeta(6,n—> z+1,> z+1)

i=1 i=1
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Example - continued

Aim: Simulate § ~ p(8|y1. ..., ¥n)
Approach: Simulate from p(8, Z|y1, ..., ¥n)
Gibbs sampling

@ Initialize 59, set t = 0

@ Simulate Z(t+1) ~ p(z|6()y)

© Simulate 5(+1) ~ p(5]2(+1) y)

© Increment t and go to step 2.
@ Conditional distribution for z:

p(26,y) ocp(8)p(2|6)p(ylz. 0)

n
O<H61—z,-(1 _ 5)2,‘4)(}/’.’ Wz, 05)
i=1

Independence between z;’s:
Pr(Z = 2|6, yi) 06" (1 = 6)% (¥, bz, 0.5)

3¢(¥j.10.0-5) z=0
o 4 99(ipg,0.5)+(1-8)¢(y;.11.0.5) =
(1-8)$(y;.11,0.5) z =1
0¢(¥i.10.0.5)+(1—0)$(y;.11,0.5) =

@ Mixture_Gibbs_sampler.R
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Example - capture-recapture

@ Aim: Estimate population size, N, of a species

@ Procedure:
o Attime t;: Catch ¢; = my individuals, each with probability o.
Mark and release
e Attime #;, i > 1: Catch ¢; individuals, each with probability c;.
Count number of newly caught individuals, m;, mark the unmarked and release all

@ Likelihood:
o Attime t;:

N
Pr(Cy = ¢1) =Pr(Cy = my) = (m1)aT1 (1—ay)N=m

o Attime ;i > 1 (number of marked individuals are >°}_% my)
Pr(Ci =ci, Mj = mjIN, €1.;_1, my;_1)
=Pr(C; = ¢|N) Pr(M; = mjIN, C; = ¢;, my.j_1)
N_S~
N . o ( Zn,;f k) (Zk 1 mk)
:( )ai’(1—oc,-) 1
Gi (&)
- i mk) (21;11 mk)

m; Ci— m;

. N
:ocf’(1 - OL,')NfC" (
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Example - capture-recapture - continued

@ Likelihood:
L(N, alje, m) o<( N )a1”” (1 — g )N-m1
my

HO‘C’“ AN=ci (N i mk) (22;11 mk)

m Ci —mj

“HQ'U Nc,(N Zk1mk)

mj
<Zk 1mk)Ha 1—(1/ N Ci

@ Prior:
f(N) o1
f(ci|01,62) ~Beta(61, 62)

@ Canderive (r = 3"k_y M):
1

Nla, ¢, m ~r + NegBinom(r + 1,1 = [ (1 — o))
i1

aj|N, a_j, ¢, m ~Beta(c; + 61, N — ¢; + 62)

@ Example_7_6.R
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Properties of Gibbs sampler (random scan)

@ Gibbs sampling (random scan):
@ Select starting values x(®) and set t = 0
@ Sample j ~ Uniform{1, ..., p}
© Sample xj(”‘) ~ f(x,|x(j})
Q Putx{" = x for k # j
@ The chain {X(V} is Markov
@ Detailed balance:
e Consider x, x* where x; # xl.* while xx = x; for k # j

FX)P(X'[x) =f(x)p " 1(x] [x..)
Fx)) (1% 7)o" F(x] )

(
(x
f(x’i,)f(x,|x,/)p“f(x, %))
(
(x

F(x")p f(xIx2))
fx)P(xIx")
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Properties of Gibbs sampler (deterministic scan)

@ Gibbs sampling (deterministic scan):

@ Select starting values x(®) and set t = 0
@ Generate, inturn

XD a0, 60, xdD)

XS ot 0elx T 0, x0)

1 1
XD et g T, XED X))
X{

n ~ (ol (t+1) ...,x(t+1>)

© Increment t and go to step 2.
@ The chain {X(V} is Markov

@ Do not fulfill detailed balance (going backwards will revert order of components
visited)
@ Will still satisfy

f(x*) /f P(x*|x)d
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@ Assume p = 2: P(x*|x) = f(x7|x2)f(x5|x7):
/f(x)P(x*\x)dx :/ ) (X1 | x2) f(xa | X7 ) dx1 dXo
X x2 J xq
:/ f(x1|x2) F(x2)f(xq | X2) F(X2 | X7 ) dxq dxa
X Jx
_ / £ 13e) FOxe X5 ) FOC ) FO X ) dxa e
% Jx
:f(x{‘,x;)/ f(xz|x1*)/ f(x1|x2)dx1 dxz
X X

=f(x}, xg‘)/ f(x2|x1)dxe
X2
=f(x1, x2) = f(X")

@ Proof similar for general p
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Tuning the Gibbs sampler

@ Random or deterministic scan?
@ Deterministic scan most common (?)
@ When high correlation, random scan can be more efficient
@ Blocking:
e When dividing X = (Xj, ..., Xp), each X; can be vectors
e Making each X; as large as possible will typically improve convergence
o Especially beneficial when high correlation between single components
@ Hybrid Gibbs sampling
o If f(x;|x_;) is difficult to sample from, use an Metropolis-Hastings step for this

component
e Example (p = 5)

@ sample X" ~ f(x1x1)

@ sample (X", x{"") through an M-H step
9 Sample Xj”” through another M.H step

@ sample X' ~ f(xsx"s")
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Capture-recapture - extended approach

@ Assume now a prior f(61, 62) o< exp{—(61 + 62)/1000}
@ Conditional distributions:
/
N|- ~r +NegBinom(r+ 1,1 = J[(1 - o))
i=1
Ot,'|~ ~Beta(c,- +604,N—ci+ 92)

r6:+62)] v o, 0 40,
(61, 65)|- ~k {W} Ea? (1—a) eXP{_emo%}

@ Example_7_7.R
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Convergence issues of MCMC

@ Theoretical properties:

X B f(x), ast— oo

L
5 1 (t) f
91_L§h(x ) — E'[h(X)] asL — oo

@ Note: We also have
1 D+L
b — (1 f
bo=7 > h(XY) = E'[A(X)] as L — oo

t=D+1

e Advantage: Remove those variables with distribution very different from f(x)
e Disadvantage: Need more samples

@ Question: How to specify D and L?

e D: Large enough so that X(*) = f(x) for t > D (bias small)
e L: Large enough so that Var[6,] is small enough
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@ Ford = 1>, h(XV):

D+L D+L—1 DtL
Varfd] = [Z Varfh(X")] +2 37 3 Cov[h(X®), (X(’))]]

t=D+1 s=D+1 t=5+1

Assume D large, so "converged":

Var[h(X)] =~ o2, Cov[h(X®)), A(X")] = o2p(t — s)

gives
1 [ D+L—1 D+L
Varl[6] ~Tz [ Z ) Z Z o2p(t — s)]
t=D+1 s=D+1 t=s+1

~ISh

L1
L—k
1423 Lp(k)]
k=1

@ Good mixing: p(k) decreases fast with k!
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Example from Exercise 7.8

Series muM1

c 8 g
H E.
H
T T T T T ° T T T T T T
0 2000 4000 6000 8000 10000 0 10 2 %0 0 50
Time Lag
Series muM2
g ]
e ¢
H 3
H
8 o |
0 2000 4000 6000 8000 10000 0 10 2 a0 w0 50
Time Lag
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How to assess convergence?

@ Graphical diagnostics:
e Sample paths:

@ Plot h(X(®) as function of ¢
@ Useful with different h(-) functions!

e Cusum diagnostics

@ Plot 31 [h(X(M) — 6,] versus t
@ Wiggly and small excursions from 0: Indicate chain is mixing well

o so0

10000

0 10

20

400
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The Gelman-Rubin diagnostic

@ Motivated from analysis of variance
@ Assume J chains run in parallel

o jth chain: x(°*", ___ x{°*1 (first D discarded)
@ Define
1 D+L J
G=7 > X" ’7:32’7
t=D+1 j=1
L J
= =32
j=1
1 J D+L
2 t) —
w :j Z Sj j 1 Z (X( Xl
j=1 t=D+1
@ If converged, both B and W estimates 02 = Var[ X]
. . %WJr{B
@ Diagnostic: A = —t——

@ "Rule": VR < 1.1 indicate D and L are sufficient
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Example: Exercise 7.8

chind(R1, R2)

e D=100,L=1000: vR; = 1.588, VR, = 1.002,
@ D=1000, L =1000: v/Ry =1.700, vR. = 1.004,
@ D =1000, L =10000: VR = 1.049,v/R> = 1.0008

T T T
0 2000 4000 6000 8000 10000

chind(1:L, 1:L)
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Apparent convergence

@ f(x)=0.7-N(7,0.5%) +0.3- N(10,0.5%)
Metropolis-Hastings with proposal N(x(, 0.052)
@ First 4000 samples (400 discarded)

x.sim([1:4000]
1

T T T
0 1000 2000 3000 4000

Time

@ Full 10000 samples

x.sim
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M-H: Choice of proposal distribution

@ Independence chain:

° g()~=1()
@ High acceptance rate
o Tail properties most important: f/g should be bounded

@ Random walk proposal
e Tune variance so that acceptance rate is between 25 and 50%
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Effective sample size for MCMC

For6 =} -7, h(X"):

L Zat=D+1

2
Var([d] :U—L”

L—1 oo
L—k Lo OF
1+2) Lp(k)] = Th“ +2  p(k)]
k=1 k=1

If independent samples:

2
Var[f] = ‘LL”

Effective sample size: Wﬁika)

Use empirical estimates p(k)

Usual to truncate the summation when p(k) < 0.1.
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Number of chains

Assume possible to perform N iterations

@ One long chain of length N, or
e J parallel chains, each of length N/J?

@ Burnin:

@ One long chain: Only need to discard D samples
o Parallel chains: Need to discard J - D samples

Check of convergence

o Easier with many parallel chains
Efficiency

o Parallel chains give more independent samples
Computational issues

o Possible to utilize multiple cores with parallel chains
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Data uncertainty and Monte Carlo uncertainty

@ Parameter: § = E'[h(X)]
e Estimator: § = 1 S-7%5., h(X®):
@ Two types of uncertainty
o Variability in h(X): og = Var’ [h(X)]
o Estimator: 62 = 1 Y245 [A(X(®) — §]2
@ MC variability in 6:

@ Estimator: Divide data into batches of size b = [L'/2], make estimates  within each batch
and variance from these

@ Recommendation: Specify L so that MC variability is less than 5% of variability in
h(X).
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Advanced topics in MCMC

@ Adaptive MCMC: Automatic tuning of proposal distributions
@ Main challenge: Specifying proposal based on history of chain breaks down the
Markov property
e Solution: Reduce the amount of tuning as the number of iterations increases
@ Reversible Jump MCMC
@ Assume several models My, ..., Mg
e Corresponding parameters 64, ..., 8k of different dimensions!
o Aim: Simulate X = (M, O,)
o RIJMCMC: M-H method for moving between spaces of different dimensions
@ Main challenge: When changing M — M*, how to propose 6 - ?
@ Simulated tempering
o Define fi(x) o< F(X)V/ i, 1 =Ty <Tp <+ < T
o Simulate (X, /), where I changes distribution
e Easier to move around when 7; > 1
@ Keep samples for which | = 1
@ Multiple-Try M-H
o Generate k proposals X, ..., X from g(-|x())
o Select X7 with probability w(x(, Xr) = f(x(0)g(X; [x()A(x(), X7), X symmetric
o Sample X;*, ..., X;* 4 from g(-[X*), put X;* = x()
o Use Generalized M-H ratio

. _ i wx®. X))
g = * *%
Zfﬂ W(Xj X))
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Hamiltonian MC

@ Common trick in Monte Carlo: Introduce auxiliary variables
@ Hamiltonian MC (Neal et al., 2011):

m(q) xexp(—U(q)) Distribution of interest
7(q, p) xexp(—U(q) — 0.5p" p) Extended distribution
=exp(—H(q. p)) H(q.p) = U(q) +0.5p"p
@ Note
@ g and p are independent
o p~ N(O,I.

o Usually dim(p)= dim(q)
@ Algorithm (q) current value
@ Simulate p ~ N(0, /)
@ Generate (q*, p*) such that H(g*, p*) ~ H(q. p)
@ Accept (g%, p*) by a Metropolis-Hastings step

@ Main challenge: Generate (q*, p*)
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Hamiltonian dynamics

@ Consider (g, p) as a time-process (q(t), p(t))
@ Hamiltonian dynamics: Change through

dg; _oH

dt _8p/

do __0H

at - 8q,-
This gives

dH _~[oHda  0H dp
dt o Gq; dt ap,- dt

¥ {%@ _ %%} 0

“~ [ 0g;Op;  Opi O -

@ If we can change (q, p) exactly by the Hamiltonian dynamics, H will not change!
@ In practice, only possible to make numerical approximations
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Hamiltonian dynamics - Eulers method

@ Assume ~
dpi
pi(t+¢) =pi(t) +e—~ p (t)
=pi(t) — Sf(qf(t))
d i ©
at +€) =ai(t) + e (1)
=qi(t) +epi(t) T -
@ Note: Derivatives of U(q) are used. ‘ ‘ ‘ ‘ : ‘ ‘
@ However, not very exact. -20 -15 -10 -05 00 05 1.0

q
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Hamiltonian dynamics - the modified Eulers method

e
—

@ Assume
p(t+€) =p(D) — e 2 (a(0)
qi(t+€) =qi(t) + epi(t + ¢€)

@ Better than Eulers method.

-0.5 0.0 0.5

-1.0

-1.0

-0.5

0.0

0.5

1.0
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Hamiltonian dynamics - the Leapfrog method

@ Assume =
€Y —n. — E% [te)

qi(t +€) =qi(t) + epi(t + 5) o

e oU e s

pi(t+¢) =pi(t + 5)—5877,.(57(”5)) )

@ Quite exact! 3

@ Idea: Use this L steps 10 05 00 05 10
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Example - 2-dimensional Gaussian

1 095
@ Assume x ~ N(0,X), X = (0_95 1 )

@ H(x,p)=05x"E 'x+05p"p
@ Use L = 5 leapfrog steps, with stepsize e = 0.1
@ leapfrog_Gauss2.R
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Example - mixture Gaussians

@ Assume
m(x) = PN(x; 1, 0%) + (1 = PYN(X; p2, 03)

@ H(x,p) = —log(m(x) +0.5p" p
@ Use L = 5 leapfrog steps, with stepsize € = 0.1

@ leapfrog_mixture.R
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