STK4051/9051 Computational statistics

Geir Storvik

Ch 7 - Markov chain Monte Carlo

Markov chain Monte Carlo

- Assume now simulating from f(X) is difficult directly
 - $f(\cdot)$ complicated
 - X high-dimensional
- Markov chain Monte Carlo:
 - Generates $\{\mathbf{X}^{(t)}\}$ sequentially
 - Markov structure: $\mathbf{X}^{(t)} \sim P(\cdot | \mathbf{X}^{(t-1)})$
- Aim now:
 - The distribution of $\mathbf{X}^{(t)}$ converges to $f(\cdot)$ as t increases
 - $\hat{\mu}_{MCMC} = N^{-1} \sum_{t=1}^{N} h(\mathbf{X}^{(t)})$ converges towards $\mu = E^{f}[h(\mathbf{X})]$ as t increases

Markov chain theory - discrete case

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = y|X^{(t-1)} = x) = P(y|x)$$

giving the transition probabilities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution f(x) such that

$$\lim_{t \to \infty} \Pr(X^{(t)} = y | X^{(0)} = x) = f(y)$$
 $\hat{\mu}_{MCMC} \to \mu = E^f[X]$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(y) = \sum_{x} f(x) P(y|x)$$

- Our situation: We have f(y), want to find P(y|x)
 - Note: Many possible P(y|x)!

Markov chain theory - general setting

ullet Assume $\{\mathbf{X}^{(t)}\}$ is a Markov chain where $\mathbf{X}^{(t)} \in \mathcal{S}$

$$\Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{y} \in A} P(\mathbf{y} | \mathbf{x}) d\mathbf{y}$$

giving the transition densities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurent: The chain will visit any $A \subset S$ infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $f(\mathbf{x})$ such that

$$\lim_{t \to \infty} \Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(0)} = \mathbf{x}) = \int_{A} f(\mathbf{y}) d\mathbf{y}$$
$$\hat{\mu}_{MCMC} \to \mu$$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

• Our situation: We have $f(\cdot)$, want to find $P(\mathbf{y}|\mathbf{x})$

Detailed balance

• The task: Find a transition probability/density P(y|x) satisfying

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

Sufficient criterion:

$$f(\mathbf{x})P(\mathbf{y}|\mathbf{x}) = f(\mathbf{y})P(\mathbf{x}|\mathbf{y})$$
 Detailed balance

We then have

$$\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}} f(\mathbf{y}) P(\mathbf{x}|\mathbf{y}) d\mathbf{x}$$
$$= f(\mathbf{y}) \int_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) d\mathbf{x} = f(\mathbf{y})$$

since $P(\mathbf{x}|\mathbf{y})$ is, for any given \mathbf{y} , a density wrt \mathbf{x} .

• Note: For y = x, detailed balance always fulfilled, only necessary to check for $y \neq x$.

Metropolis-Hastings algorithms

- P(y|x) defined through an algorithm:
 - **1** Sample a candidate value \mathbf{X}^* from a proposal distribution $g(\cdot|\mathbf{x})$.
 - Compute the Metropolis-Hastings ratio

$$R(\mathbf{x}, \mathbf{X}^*) = \frac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{X}^* & \text{with probability } \min\{1, R(\mathbf{X}, \mathbf{X}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

• For $\mathbf{y} \neq \mathbf{x}$:

$$P(\mathbf{y}|\mathbf{x}) = g(\mathbf{y}|\mathbf{x}) \min \left\{ 1, \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} \right\}$$

- Note: $P(\mathbf{x}|\mathbf{x})$ somewhat difficult to evaluate in this case.
- Detailed balance (?)

$$f(\mathbf{x})P(\mathbf{y}|\mathbf{x}) = f(\mathbf{x})g(\mathbf{y}|\mathbf{x}) \min \left\{ 1, \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} \right\}$$

$$= \min\{f(\mathbf{x})g(\mathbf{y}|\mathbf{x}), f(\mathbf{y})g(\mathbf{x}|\mathbf{y})\}$$

$$= f(\mathbf{y})g(\mathbf{x}|\mathbf{y}) \min \left\{ \frac{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})}{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}, 1 \right\} = f(\mathbf{y})P(\mathbf{x}|\mathbf{y})$$

M-H and unknown constant

• Assume now $f(\mathbf{x}) = c \cdot q(\mathbf{x})$ with c unknown.

$$R(\mathbf{x},\mathbf{y}) = \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} = \frac{c \cdot q(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{c \cdot q(\mathbf{x})g(\mathbf{y}|\mathbf{x})} = \frac{q(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{q(\mathbf{x})g(\mathbf{y}|\mathbf{x})}$$

Do not depend on c!

Random walk chains

Popular choice of proposal distribution:

$$\mathbf{X}^* = \mathbf{x} + \boldsymbol{\varepsilon}$$

- $g(\mathbf{x}^*|\mathbf{x}) = h(\mathbf{x}^* \mathbf{x})$
- Popular choices: Uniform, Gaussian, t-distribution
- Note: If $h(\cdot)$ is symmetric, $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}|\mathbf{x}^*)$ and

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{f(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{f(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{f(\mathbf{x}^*)}{f(\mathbf{x})}$$

Example

- Assume $f(x) \propto \exp(-|x|^3/3)$
- Proposal distribution N(x, 1)
- Example_MH_cubic.R

Independent chains

• Assume $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}^*)$. Then

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{f(\mathbf{x}^*)g(\mathbf{x})}{f(\mathbf{x})g(\mathbf{x}^*)} = \frac{\frac{f(\mathbf{x}^*)}{g(\mathbf{x}^*)}}{\frac{f(\mathbf{x})}{g(\mathbf{x})}},$$

fraction of importance weights!

- Behave very much like importance sampling and SIR
- Difficult to specify $g(\mathbf{x})$ for high-dimensional problems
- Theoretical properties easier to evaluate than for random walk versions.

M-H and multivariate settings

- $\mathbf{X} = (X_1, ..., X_p)$
- Typical in this case: Only change one or a few components at a time.
 - Choose index j (randomly)
 - 3 Sample $X_i^* \sim g_j(\cdot | \mathbf{x})$, put $X_k^* = X_k$ for $k \neq j$
 - Compute

$$R(\mathbf{x}, \mathbf{X}^*) = \frac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{X}^* & \text{with probability } \min\{1, \textit{R}(\mathbf{x}, \mathbf{X}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

- Can show that this version also satisfies detailed balance
- Can even go through indexes systematic
 - Should then consider the whole loop through all components as one iteration

Example

- Assume $f(\mathbf{x}) \propto \exp(-||\mathbf{x}||^3/3) = \exp(-[||\mathbf{x}||^2]^{3/2}/3) =$
- Proposal distribution
 - **1** $j \sim \text{Uniform}[1, 2, ..., p]$
 - ② $x_i^* \sim N(x_i, 1)$
- Example_MH_cubic_multivariate.R

Reparametrization

- Sometimes easier to transform variables to another scale $Y = \bar{h}(X)$
- Two approaches (use $h^{-1}(\cdot) = \bar{h}(\cdot)$ so X = h(Y))
 - Reparametrize $Y = \bar{h}(X)$, simulate from $f_Y(y)$ instead

$$f_{Y}(y) = f_{X}(h(y))|h'(y)|$$

$$R(y, y^{*}) = \frac{f_{X}(h(y^{*}))|h'(y^{*})|g_{y}(y|y^{*})}{f_{X}(h(y))|h'(y)|g_{y}(y^{*}|y)}$$

$$= \frac{f_{X}(x^{*})|h'(y^{*})|g_{y}(y|y^{*})}{f_{X}(x)|h'(y)|g_{y}(y^{*}|y)}$$

• Run the MCMC in X-space, but construct proposal through X = h(Y),

$$\begin{split} g_{X}(x^{*}|x) &= g_{Y}(\bar{h}(x^{*})|\bar{h}(x))|\bar{h}'(x^{*})| \\ R(x,x^{*}) &= \frac{f_{X}(x^{*})g_{Y}(\bar{h}(x)|\bar{h}(x^{*}))|\bar{h}'(x)|}{f_{X}(x)g_{Y}(\bar{h}(x^{*})|\bar{h}(x))|\bar{h}'(x^{*})|} \\ &= \frac{f_{X}(x^{*})g_{Y}(y|y^{*})|h'(y^{*})|}{f_{X}(x)g_{Y}(y^{*}|y)|h'(y)|} \end{split}$$

since $\bar{h}'(x) = 1/h'(y)$

Gibbs sampling

- Assume $X = (X_1, ..., X_p)$
- Aim: Simulate $\mathbf{X} \sim f(\mathbf{x})$
- Gibbs sampling:
 - **1** Select starting values $\mathbf{x}^{(0)}$ and set t = 0
 - Generate, in turn

$$\begin{split} X_{1}^{(t+1)} \sim & f(x_{1}|x_{2}^{(t)}, x_{3}^{(t)}, ..., x_{p}^{(t)}) \\ X_{2}^{(t+1)} \sim & f(x_{2}|x_{1}^{(t+1)}, x_{3}^{(t)}, ..., x_{p}^{(t)}) \\ & \vdots \\ X_{p-1}^{(t+1)} \sim & f(x_{p-1}|x_{1}^{(t+1)}, ..., x_{p-2}^{(t+1)}, x_{p}^{(t)}) \\ X_{p}^{(t+1)} \sim & f(x_{p}|x_{1}^{(t+1)}, ..., x_{p-1}^{(t+1)}) \end{split}$$

- Increment t and go to step 2.
- Completion of step 2 is called a cycle

Example - Mixture distribution

Mixture distribution

$$Y \sim f(y) = \delta \phi(y, \mu_0, 0.5) + (1 - \delta)\phi(y, \mu_1, 0.5), \quad \mu_0 = 7, \mu_1 = 10$$

- Prior $\delta \sim \text{Uniform}[0, 1]$
- Aim: Simulate $\delta \sim p(\delta|y_1,...,y_n)$

$$p(\delta|y_1,...,y_n) \propto \prod_{i=1}^n [\delta\phi(y_i,7,0.5) + (1-\delta)\phi(y_i,10,0.5)]$$

Difficult to simulate from directly

Note, can write model for Y by

$$Pr(Z = z) = \delta^{1-z} (1 - \delta)^{z},$$
 $z = 0, 1$
 $Y|Z = z \sim \phi(y, \mu_{z}, 0.5),$ $\mu_{0} = 7, \mu_{1} = 10$

Note:

$$p(\delta|y_1, ..., y_n, z_1, ..., z_n) \propto \prod_{i=1}^n \delta^{1-z_i} (1-\delta)^{z_i} \phi(y_i, \mu_{z_i}, 0.5)$$

$$\propto \delta^{n-\sum_{i=1}^n z_i} (1-\delta)^{\sum_{i=1}^n z_i}$$

$$\propto \text{Beta}(\delta, n - \sum_{i=1}^n z_i + 1, \sum_{i=1}^n z_i + 1)$$

Example - continued

- Aim: Simulate $\delta \sim p(\delta|y_1,...,y_n)$
- Approach: Simulate from p(δ, Z|y₁, ..., y_n)
- Gibbs sampling
 - Initialize $\delta^{(0)}$, set t=0
 - 2 Simulate $\mathbf{Z}^{(t+1)} \sim p(\mathbf{z}|\delta^{(t)},\mathbf{y})$
 - 3 Simulate $\delta^{(t+1)} \sim p(\delta|\mathbf{z}^{(t+1)},\mathbf{y})$
 - Increment t and go to step 2.
- Conditional distribution for z:

$$\begin{split} \rho(\mathbf{z}|\delta,\mathbf{y}) &\propto & p(\delta) p(\mathbf{z}|\delta) \rho(\mathbf{y}|\mathbf{z},\delta) \\ &\propto \prod_{i=1}^{n} \delta^{1-z_i} (1-\delta)^{z_i} \phi(y_i,\mu_{z_i},0.5) \end{split}$$

• Independence between z_i's:

$$\begin{split} \Pr(Z_i = z_i | \delta, y_i) \propto & \delta^{1-z_i} (1 - \delta)^{z_i} \phi(y_i, \mu_{z_i}, 0.5) \\ \propto \begin{cases} \frac{\delta \phi(y_i, \mu_0.0.5)}{\delta \phi(y_i, \mu_0.0.5) + (1 - \delta) \phi(y_i, \mu_1.0.5)} & z_i = 0 \\ \frac{(1 - \delta) \phi(y_i, \mu_1.0.5)}{\delta \phi(y_i, \mu_0.0.5) + (1 - \delta) \phi(y_i, \mu_1.0.5)} & z_i = 1 \end{cases} \end{split}$$

Mixture_Gibbs_sampler.R

Example - capture-recapture

- Aim: Estimate population size, N, of a species
- Procedure:
 - At time t_1 : Catch $c_1 = m_1$ individuals, each with probability α_1 . Mark and release
 - At time t_i , i > 1: Catch c_i individuals, each with probability α_i . Count number of newly caught individuals, m_i , mark the unmarked and release all
- Likelihood:
 - At time t₁:

$$\Pr(C_1 = c_1) = \Pr(C_1 = m_1) = \binom{N}{m_1} \alpha_1^{m_1} (1 - \alpha_1)^{N - m_1}$$

• At time t_i , i > 1 (number of marked individuals are $\sum_{k=1}^{i-1} m_k$)

$$\begin{aligned} \Pr(C_{i} = c_{i}, M_{j} = m_{i} | N, \mathbf{c}_{1:j-1}, \mathbf{m}_{1:j-1}) \\ &= \Pr(C_{i} = c_{i} | N) \Pr(M_{i} = m_{i} | N, C_{i} = c_{i}, \mathbf{m}_{1:j-1}) \\ &= \binom{N}{c_{i}} \alpha_{i}^{c_{i}} (1 - \alpha_{i})^{N - c_{i}} \frac{\binom{N - \sum_{k=1}^{i-1} m_{k}}{m_{i}} \binom{\sum_{k=1}^{i-1} m_{k}}{c_{i} - m_{i}}}{\binom{N}{c_{i}}} \\ &= \alpha_{i}^{c_{i}} (1 - \alpha_{i})^{N - c_{i}} \binom{N - \sum_{k=1}^{i-1} m_{k}}{m_{i}} \binom{\sum_{k=1}^{i-1} m_{k}}{c_{i} - m_{i}} \end{aligned}$$

Example - capture-recapture - continued

Likelihood:

$$\begin{split} L(N, \pmb{\alpha} | \mathbf{c}, \mathbf{m}) &\propto \binom{N}{m_1} \alpha_1^{m_1} (1 - \alpha_1)^{N - m_1} \times \\ &\prod_{i=2}^{I} \alpha_j^{c_i} (1 - \alpha_i)^{N - c_i} \binom{N - \sum_{k=1}^{i-1} m_k}{m_i} \binom{\sum_{k=1}^{i-1} m_k}{c_i - m_i} \\ &\propto \prod_{i=1}^{I} \alpha_i^{c_i} (1 - \alpha_i)^{N - c_i} \binom{N - \sum_{k=1}^{i-1} m_k}{m_i} \\ &\propto \binom{N}{\sum_{k=1}^{I} m_k} \prod_{i=1}^{I} \alpha_i^{c_i} (1 - \alpha_i)^{N - c_i} \end{split}$$

Prior:

$$f(N) \propto 1$$

 $f(\alpha_i | \theta_1, \theta_2) \sim \text{Beta}(\theta_1, \theta_2)$

• Can derive $(r = \sum_{k=1}^{l} m_k)$:

$$N|\alpha, \mathbf{c}, \mathbf{m} \sim r + \text{NegBinom}(r+1, 1 - \prod_{i=1}^{r} (1 - \alpha_i))$$

$$\alpha_i | N, \boldsymbol{\alpha}_{-i}, \mathbf{c}, \mathbf{m} \sim \text{Beta}(c_i + \theta_1, N - c_i + \theta_2)$$

Example_7_6.R

Properties of Gibbs sampler (random scan)

- Gibbs sampling (random scan):
 - Select starting values $\mathbf{x}^{(0)}$ and set t = 0
 - 2 Sample $j \sim \text{Uniform}\{1, ..., p\}$
 - 3 Sample $X_j^{(t+1)} \sim f(x_j | \mathbf{x}_{-j}^{(t)})$
 - **1** Put $X_k^{(t+1)} = X_k^{(t)}$ for $k \neq j$
- The chain $\{\mathbf{X}^{(t)}\}$ is Markov
- Detailed balance:
 - Consider \mathbf{x} , \mathbf{x}^* where $x_j \neq x_j^*$ while $x_k = x_k^*$ for $k \neq j$

$$f(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = f(\mathbf{x})\rho^{-1}f(x_j^*|\mathbf{x}_{-j})$$

$$= f(\mathbf{x}_{-j})f(x_j|\mathbf{x}_{-j})\rho^{-1}f(x_j^*|\mathbf{x}_{-j})$$

$$= f(\mathbf{x}_{-j}^*)f(x_j|\mathbf{x}_{-j}^*)\rho^{-1}f(x_j^*|\mathbf{x}_{-j}^*)$$

$$= f(\mathbf{x}^*)\rho^{-1}f(x_j|\mathbf{x}_{-j}^*)$$

$$= f(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$

Properties of Gibbs sampler (deterministic scan)

- Gibbs sampling (deterministic scan):
 - **1** Select starting values $\mathbf{x}^{(0)}$ and set t = 0
 - Generate, in turn

$$\begin{split} X_1^{(t+1)} \sim & f(x_1|x_2^{(t)}, x_3^{(t)}, ..., x_p^{(t)}) \\ X_2^{(t+1)} \sim & f(x_2|x_1^{(t+1)}, x_3^{(t)}, ..., x_p^{(t)}) \\ & \vdots \\ X_{p-1}^{(t+1)} \sim & f(x_{p-1}|x_1^{(t+1)}, ..., x_{p-2}^{(t+1)}, x_p^{(t)}) \\ X_p^{(t+1)} \sim & f(x_p|x_1^{(t+1)}, ..., x_{p-1}^{(t+1)}) \end{split}$$

- Increment t and go to step 2.
- The chain $\{\mathbf{X}^{(t)}\}$ is Markov
- Do not fulfill detailed balance (going backwards will revert order of components visited)
- Will still satisfy

$$f(\mathbf{x}^*) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

• Assume p = 2: $P(\mathbf{x}^*|\mathbf{x}) = f(x_1^*|x_2)f(x_2^*|x_1^*)$:

$$\begin{split} \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x} &= \int_{x_2} \int_{x_1} f(\mathbf{x}) f(x_1^* | x_2) f(x_2^* | x_1^*) dx_1 dx_2 \\ &= \int_{x_2} \int_{x_1} f(x_1 | x_2) f(x_2) f(x_1^* | x_2) f(x_2^* | x_1^*) dx_1 dx_2 \\ &= \int_{x_2} \int_{x_1} f(x_1 | x_2) f(x_2 | x_1^*) f(x_1^*) f(x_2^* | x_1^*) dx_1 dx_2 \\ &= f(x_1^*, x_2^*) \int_{x_2} f(x_2 | x_1^*) \int_{x_1} f(x_1 | x_2) dx_1 dx_2 \\ &= f(x_1^*, x_2^*) \int_{x_2} f(x_2 | x_1^*) dx_2 \\ &= f(x_1^*, x_2^*) = f(\mathbf{x}^*) \end{split}$$

Proof similar for general p

Tuning the Gibbs sampler

- Random or deterministic scan?
 - Deterministic scan most common (?)
 - When high correlation, random scan can be more efficient
- Blocking:
 - When dividing $\mathbf{X} = (X_1, ..., X_p)$, each X_i can be vectors
 - Making each X_i as large as possible will typically improve convergence
 - Especially beneficial when high correlation between single components
- Hybrid Gibbs sampling
 - If $f(x_j|\mathbf{x}_{-j})$ is difficult to sample from, use an Metropolis-Hastings step for this component
 - Example (p = 5)
 - **1** Sample $X_1^{(t+1)} \sim f(x_1 | \mathbf{x}_{-1}^{(t)})$
 - Sample $(X_2^{(t+1)}, X_3^{(t+1)})$ through an M-H step
 - 3 Sample $X_4^{(t+1)}$ through another M.H step
 - 4 Sample $X_5^{(t+1)} \sim f(x_5 | \mathbf{x}_{-5}^{(t+1)})$

Capture-recapture - extended approach

- Assume now a prior $f(\theta_1, \theta_2) \propto \exp\{-(\theta_1 + \theta_2)/1000\}$
- Conditional distributions:

$$\begin{split} N|\cdot \sim & r + \text{NegBinom}(r+1, 1 - \prod_{i=1}^{r} (1 - \alpha_i)) \\ \alpha_i|\cdot \sim & \text{Beta}(c_i + \theta_1, N - c_i + \theta_2) \\ (\theta_1, \theta_2)|\cdot \sim & k \left[\frac{\Gamma(\theta_1 + \theta_2)}{\Gamma(\theta_1)\Gamma(\theta_2)}\right]^{l} \prod_{i=1}^{l} \alpha_i^{\theta_1} (1 - \alpha_i)^{\theta_2} \exp\left\{-\frac{\theta_1 + \theta_2}{1000}\right\} \end{split}$$

• Example_7_7.R

Convergence issues of MCMC

Theoretical properties:

$$\mathbf{X}^{(t)} \stackrel{\mathcal{D}}{\to} f(\mathbf{x}), \quad \text{as } t \to \infty$$

$$\hat{\theta}_1 = \frac{1}{L} \sum_{t=1}^{L} h(\mathbf{X}^{(t)}) \to E^f[h(\mathbf{X})] \quad \text{as } L \to \infty$$

Note: We also have

$$\hat{\theta}_2 = \frac{1}{L} \sum_{t=D+1}^{D+L} h(\mathbf{X}^{(t)}) \to E^t[h(\mathbf{X})] \quad \text{as } L \to \infty$$

- Advantage: Remove those variables with distribution very different from $f(\mathbf{x})$
- Disadvantage: Need more samples
- Question: How to specify D and L?
 - D: Large enough so that $\mathbf{X}^{(t)} \approx f(\mathbf{x})$ for t > D (bias small)
 - L: Large enough so that $Var[\hat{\theta}_2]$ is small enough

Mixing

• For $\hat{\theta} = \frac{1}{L} \sum_{t=D+1}^{D+L} h(\mathbf{X}^{(t)})$:

$$\operatorname{Var}[\hat{\theta}] = \frac{1}{L^2} \left[\sum_{t=D+1}^{D+L} \operatorname{Var}[h(\mathbf{X}^{(t)})] + 2 \sum_{s=D+1}^{D+L-1} \sum_{t=s+1}^{D+L} \operatorname{Cov}[h(\mathbf{X}^{(s)}), h(\mathbf{X}^{(t)})] \right]$$

Assume D large, so "converged":

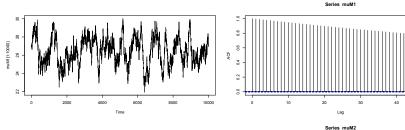
$$\mathsf{Var}[h(\mathbf{X}^{(t)})] pprox \sigma_h^2, \quad \mathsf{Cov}[h(\mathbf{X}^{(s)}), h(\mathbf{X}^{(t)})] pprox \sigma_h^2
ho(t-s)$$

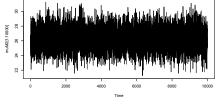
gives

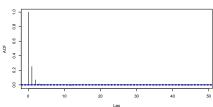
$$\operatorname{Var}[\hat{\theta}] \approx \frac{1}{L^{2}} \left[\sum_{t=D+1}^{D+L} \sigma_{h}^{2} + 2 \sum_{s=D+1}^{D+L-1} \sum_{t=s+1}^{D+L} \sigma_{h}^{2} \rho(t-s) \right]$$
$$= \frac{\sigma_{h}^{2}}{L} \left[1 + 2 \sum_{k=1}^{L-1} \frac{L-k}{L} \rho(k) \right]$$

• Good mixing: $\rho(k)$ decreases fast with k!

Example from Exercise 7.8

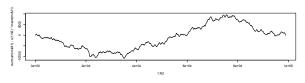


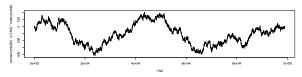




How to assess convergence?

- Graphical diagnostics:
 - Sample paths:
 - Plot $h(\mathbf{X}^{(t)})$ as function of t
 - Useful with different h(·) functions!
 - Cusum diagnostics
 - Plot $\sum_{i=1}^{t} [h(\mathbf{X}^{(i)}) \hat{\theta}_n]$ versus t
 - Wiggly and small excursions from 0: Indicate chain is mixing well





The Gelman-Rubin diagnostic

- Motivated from analysis of variance
- Assume J chains run in parallel
- jth chain: $x_j^{(D+1)}, ..., x_j^{(D+L)}$ (first D discarded)
- Define

$$\bar{x}_{j} = \frac{1}{L} \sum_{t=D+1}^{D+L} x_{j}^{(t)} \qquad \qquad \bar{x}_{i} = \frac{1}{J} \sum_{j=1}^{J} \bar{x}_{j}$$

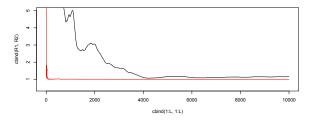
$$B = \frac{L}{J-1} \sum_{j=1}^{J} (\bar{x}_{j} - \bar{x}_{i})^{2}$$

$$W = \frac{1}{J} \sum_{i=1}^{J} s_{j}^{2} \qquad \qquad s_{j}^{2} = \frac{1}{L-1} \sum_{t=D+1}^{D+L} (x_{j}^{(t)} - \bar{x}_{j})^{2}$$

- If converged, both B and W estimates $\sigma^2 = \operatorname{Var}_f[X]$
- Diagnostic: $R = \frac{\frac{L-1}{L}W + \frac{1}{L}B}{W}$
- "Rule": \sqrt{R} < 1.1 indicate D and L are sufficient

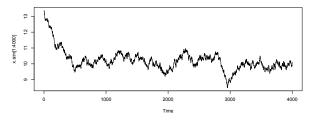
Example: Exercise 7.8

- D = 100, L = 1000: $\sqrt{R_1} = 1.588$, $\sqrt{R_2} = 1.002$,
- D = 1000, L = 1000: $\sqrt{R_1} = 1.700$, $\sqrt{R_2} = 1.004$,
- D = 1000, L = 10000: $\sqrt{R_1} = 1.049$, $\sqrt{R_2} = 1.0008$

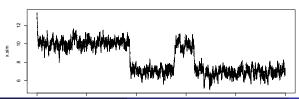


Apparent convergence

- $f(x) = 0.7 \cdot N(7, 0.5^2) + 0.3 \cdot N(10, 0.5^2)$
- Metropolis-Hastings with proposal $N(x^{(t)}, 0.05^2)$
- First 4000 samples (400 discarded)



Full 10000 samples



M-H: Choice of proposal distribution

- Independence chain:
 - $g(\cdot) \approx f(\cdot)$
 - High acceptance rate
 - ullet Tail properties most important: f/g should be bounded
- Random walk proposal
 - Tune variance so that acceptance rate is between 25 and 50%

Effective sample size for MCMC

• For $\hat{\theta} = \frac{1}{L} \sum_{t=D+1}^{D+L} h(\mathbf{X}^{(t)})$:

$$\operatorname{Var}[\hat{\theta}] = \frac{\sigma_h^2}{L} \left[1 + 2 \sum_{k=1}^{L-1} \frac{L-k}{L} \rho(k) \right] \stackrel{L \to \infty}{\to} \frac{\sigma_h^2}{L} [1 + 2 \sum_{k=1}^{\infty} \rho(k)]$$

If independent samples:

$$\operatorname{Var}[\hat{ heta}] = rac{\sigma_h^2}{L}$$

- Effective sample size: $\frac{L}{1+2\sum_{k=1}^{\infty}\rho(k)}$
- Use empirical estimates $\hat{\rho}(k)$
- Usual to truncate the summation when $\hat{\rho}(k) < 0.1$.

Number of chains

- Assume possible to perform N iterations
 - One long chain of length N, or
 - J parallel chains, each of length N/J?
- Burnin:
 - One long chain: Only need to discard D samples
 - Parallel chains: Need to discard $J \cdot D$ samples
- Check of convergence
 - Easier with many parallel chains
- Efficiency
 - Parallel chains give more independent samples
- Computational issues
 - Possible to utilize multiple cores with parallel chains

Data uncertainty and Monte Carlo uncertainty

- Parameter: $\theta = E^f[h(\mathbf{X})]$
- Estimator: $\hat{\theta} = \frac{1}{L} \sum_{t=D+1}^{D+L} h(\mathbf{X}^{(t)})$:
- Two types of uncertainty
 - Variability in $h(\mathbf{X})$: $\sigma_h^2 = \text{Var}^f[h(\mathbf{X})]$
 - Estimator: $\hat{\sigma}_h^2 = \frac{1}{L} \sum_{t=D+1}^{D+L} [h(\mathbf{X}^{(t)}) \hat{\theta}]^2$
 - MC variability in $\hat{\theta}$:
 - Estimator: Divide data into batches of size b = L^{1/a}, make estimates θ̂ within each batch and variance from these
- Recommendation: Specify L so that MC variability is less than 5% of variability in h(X).

Advanced topics in MCMC

- Adaptive MCMC: Automatic tuning of proposal distributions
 - Main challenge: Specifying proposal based on history of chain breaks down the Markov property
 - Solution: Reduce the amount of tuning as the number of iterations increases
- Reversible Jump MCMC
 - Assume several models M₁, ..., M_K
 - Corresponding parameters $\theta_1, ..., \theta_K$ of different dimensions!
 - Aim: Simulate $\mathbf{X} = (\mathcal{M}, \boldsymbol{\theta}_{\mathcal{M}})$
 - RJMCMC: M-H method for moving between spaces of different dimensions
 - Main challenge: When changing $\mathcal{M} \to \mathcal{M}^*$, how to propose $\theta_{\mathcal{M}^*}$?

Simulated tempering

- Define $f^i(\mathbf{x}) \propto f(\mathbf{x})^{1/\tau_i}$, $1 = \tau_1 < \tau_2 < \cdots < \tau_m$
- Simulate (X, I), where I changes distribution
- Easier to move around when $\tau_i > 1$
- Keep samples for which I = 1
- Multiple-Try M-H
 - Generate k proposals $\mathbf{X}_1^*, ..., \mathbf{X}_k^*$ from $g(\cdot | \mathbf{x}^{(t)})$
 - Select \mathbf{X}_{i}^{*} with probability $w(\mathbf{x}^{(t)}, \mathbf{X}_{i}^{*}) = f(\mathbf{x}^{(t)})g(\mathbf{X}_{i}^{*}|\mathbf{x}^{(t)})\lambda(\mathbf{x}^{(t)}, \mathbf{X}_{i}^{*}), \lambda$ symmetric
 - Sample \mathbf{X}_1^{**} , ..., \mathbf{X}_{k-1}^{**} from $g(\cdot|\mathbf{X}_i^*)$, put $\mathbf{X}_k^{**} = \mathbf{x}^{(t)}$
 - Use Generalized M-H ratio

$$R_g = \frac{\sum_{i=1}^k w(\mathbf{x}^{(t)}, \mathbf{X}_i^*)}{\sum_{i=1}^k w(\mathbf{X}_i^*, \mathbf{X}_i^{**})}$$

Hamiltonian MC

- Common trick in Monte Carlo: Introduce auxiliary variables
- Hamiltonian MC (Neal et al., 2011):

$$\pi(\mathbf{q}) \propto \exp(-U(\mathbf{q}))$$
 Distribution of interest
$$\pi(\mathbf{q}, \mathbf{p}) \propto \exp(-U(\mathbf{q}) - 0.5\mathbf{p}^T\mathbf{p})$$
 Extended distribution
$$= \exp(-H(\mathbf{q}, \mathbf{p}))$$
 $H(\mathbf{q}, \mathbf{p}) = U(\mathbf{q}) + 0.5\mathbf{p}^T\mathbf{p}$

- Note
 - q and p are independent
 - $\vec{p} \sim N(0, I)$.
 - Usually dim(p)= dim(q)
- Algorithm (q) current value
 - **1** Simulate $\boldsymbol{p} \sim N(\boldsymbol{0}, \boldsymbol{I})$
 - **2** Generate $(\mathbf{q}^*, \mathbf{p}^*)$ such that $H(\mathbf{q}^*, \mathbf{p}^*) \approx H(\mathbf{q}, \mathbf{p})$
 - Accept (q*, p*) by a Metropolis-Hastings step
- Main challenge: Generate (q*, p*)

Hamiltonian dynamics

- Consider (q, p) as a time-process (q(t), p(t))
- Hamiltonian dynamics: Change through

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

This gives

$$\frac{dH}{dt} = \sum_{i=1}^{d} \left[\frac{\partial H}{\partial q_i} \frac{dq_i}{dt} + \frac{\partial H}{\partial p_i} \frac{dp_i}{dt} \right]$$
$$= \sum_{i=1}^{d} \left[\frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} \right] = 0$$

- If we can change (q, p) exactly by the Hamiltonian dynamics, H will not change!
- In practice, only possible to make numerical approximations

Hamiltonian dynamics - Eulers method

Assume

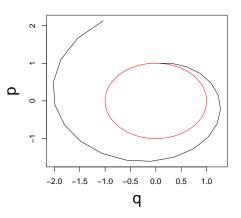
$$p_{i}(t+\varepsilon) = p_{i}(t) + \varepsilon \frac{dp_{i}}{dt}(t)$$

$$= p_{i}(t) - \varepsilon \frac{\partial U}{\partial q_{i}}(q_{i}(t))$$

$$q_{i}(t+\varepsilon) = q_{i}(t) + \varepsilon \frac{dq_{i}}{dt}(t)$$

 $=q_i(t)+\varepsilon p_i(t)$

- Note: Derivatives of U(q) are used.
- However, not very exact.



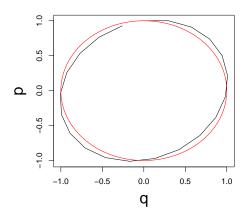
Hamiltonian dynamics - the modified Eulers method

Assume

$$p_i(t+\varepsilon) = p_i(t) - \varepsilon \frac{\partial U}{\partial q_i}(q(t))$$

$$q_i(t+\varepsilon) = q_i(t) + \varepsilon p_i(t+\varepsilon)$$

Better than Eulers method.

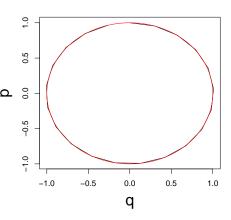


Hamiltonian dynamics - the Leapfrog method

Assume

$$\begin{aligned} & p_i(t + \frac{\varepsilon}{2}) = p_i(t) - \frac{\varepsilon}{2} \frac{\partial U}{\partial q_i}(q(t)) \\ & q_i(t + \varepsilon) = q_i(t) + \varepsilon p_i(t + \frac{\varepsilon}{2}) \\ & p_i(t + \varepsilon) = p_i(t + \frac{\varepsilon}{2}) - \frac{\varepsilon}{2} \frac{\partial U}{\partial q_i}(q_(t + \varepsilon)) \end{aligned}$$

- Quite exact!
- Idea: Use this L steps



Example - 2-dimensional Gaussian

• Assume
$$\mathbf{x} \sim N(\mathbf{0}, \mathbf{\Sigma}), \mathbf{\Sigma} = \begin{pmatrix} 1 & 0.95 \\ 0.95 & 1 \end{pmatrix}$$

- $H(x, p) = 0.5x^{T}\Sigma^{-1}x + 0.5p^{T}p$
- Use L = 5 leapfrog steps, with stepsize $\varepsilon = 0.1$
- leapfrog_Gauss2.R

Example - mixture Gaussians

Assume

$$\pi(x) = pN(x; \mu_1, \sigma_1^2) + (1 - p)N(x; \mu_2, \sigma_2^2)$$

- $H(x, p) = -log(\pi(x) + 0.5p^{T}p$
- Use L = 5 leapfrog steps, with stepsize $\varepsilon = 0.1$
- leapfrog_mixture.R

R. M. Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2(11):2, 2011.