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Problem 2

Consider the Metropolis-Hastings algorithm where the transition densities
P(y|x) are defined through:

e Sample a candidate value X* from a proposal distribution g(-|x).

e Compute the Metropolis-Hastings ratio

X")g(z| X"
R, x7) = {0 X)
flz)g(X*|x)
e Put
Y X* with probability min{l, R(z, X*)}:
|z  otherwise.
An essential requirement for a Markov chain to converge to a stationary

distribution 7(a) is that

m(y) =/71'(1E)P(y|m)dm- (*) criterion
m(y)P(z|y) = m(x)P(y|z).

(a) Show that a sufficient requirement for (*) is the detailed balance

(1)

m(x)P(y|xz)de = | 7(y)P(x|y)dz

Jx Jr

=m(y) | Plzly)dz = n(y)
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Problem 2

Consider the Metropolis-Hastings algorithm where the transition densities
P(y|z) are defined through:

e Sample a candidate value X* from a proposal distribution g(-|x).

e Compute the Metropolis-Hastings ratio

f(X")g(=|X")

Rz, X°) = @ (xX)

m(y)P(x|y) = m(x)P(y|x).

e Put balance criterion.

xr otherwise.

Y — {X' with probability min{l, R(z, X*)}:

converge in distribution to 7(z)?

(1)

(b) Show that the Metropolis-Hastings algorithm satisfies the detailed

What other criteria are needed in order for the Markov chain to

An essential requirement for a Markov chain to converge to a stationary
distribution 7(x) is that

n(y) = / (@) P(y|z)dz. *)

=m(y)g(x|y) min
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Problem 2

Consider the Metropolis-Hastings algorithm where the transition densities

P(y|x) are defined through:
e Sample a candidate value X* from a proposal distribution g(-|x).
e Compute the Metropolis-Hastings ratio

f(X")g(x| X™)

R(z, X") = ,
( ) f(z)g(X*|x)
e Put
v X* with probability min{1, R(z, X*)};
x  otherwise.
An essential requirement for a Markov chain to converge to a stationary

distribution (@) is that

What other criteria are needed in order for the Markov chain to

m(y) :/Tr(w)f’(y|z)da:. . ey , .
» converge in distribution to w(x)?

Also need irreducibility, that is it is possible to move from any state x
to any other state g in a finite number of steps. You also need the chain
to be aperiodie, but this will be fulfilled as long as there is a positive
probability for not accepting a new proposal (which will always be the
case except for some degerate situations)

In in infinite state space you also need reccuence, i.e. probability 1 for
returning to any set of non-neglible measure
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Assume now you want to use the Metropolis-Hastings algorithm to simulate
from a one-dimensional distribution given by

m(x) o sin®(x) - sin?(2z) - ¢(x)

where ¢(x) is the density for the standard Gaussian distribution. We will
consider two different proposal distributions:

gi(2"|x)

v (0, af )
ga(x*|) r, 0}

=N

=N(z,03).

These two proposal distributions were run with oy = 3.5 and o, = 2.5. A
total of 11000 iterations were run where the first 1000 were discarded. The
plots below shows traceplots (including the first 1000 iterations), estimated
autocorrelation functions and histograms for the two proposal distributions.
The acceptance rates for the two proposal distributions were .24 and 0.28,
respectively.

(¢) For each of the two proposal distributions, derive formulas for the
Metropolis-Hastings acceptance probabilities.
What type of Metropolis-Hastings algorithms do the g, and g, proposal
) ! g =) ) 92
distributions belong to?
Are the acceptance rates satisfactory for the two proposal distributions?
If not, how would you recommend to change the proposal distributions?
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For g, we obtain

_sinz(.r‘)siu"’(?.r')(;)(.r': 0,1)p(x;2*,0,) sin®(z*) sin?(2z*)o(x*; 0, 1)

siuz(.r)si112(2.r)0(.r:(1.l)(,')(.r‘:.r,rrz) ~ sin’(z) sin®(2z)o(x; 0, 1)

R

f(X")g(z| X")
fle)g(X+|x)

f(x) =m(x)

R(z, X*) =

T T

The g, proposal corresponds to an independent sampler while g
corresponds to random walk. For the first one we would like the
acceptance rate to be as large as possible, indicating that it is too
small in this case. One can try to change o, to see when the acceptance
probability is largest. Given that the standard gaussian distribution is
involved in the target distribution, something closer to this distribution
should be expected to give higher acceptance rate.

(¢) For gy:

sin?(
= 3

R=

x*)sin?(22*)@(z*;0,1)¢(x: 0, 07)
(z) sin(2z)o(x; 0, 1)p(z*; 0, o)

sin

For g,, we want the acceptance rate to be somewhere between (.25 and
0.50, which is ok in this case (perhaps we could increase the acceptance
rate somewhat by decreasing the variance).
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(d) Why would one discard the values obtained from the first iterations?
Describe a general method for specifying the number of iterations to

discard.

(d) A Markov chain typically needs some time before the simulated values
are close to the target distribution. In order to reduce the bias, the
first iterations should therefore be discarded.

Two possible methods for specifying the burnin:

e Looking at the trace plots and see if they have stabilized

e Calculate the Gelman-Rubin criterion, which, when running
multiple chains, mainly compare within variability with between
variability. This is a more formal criterion.
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(e) For the two proposal distributions, the quantity >~ p(k), with p(k) =
cor((z')?, (z'**)?] was estimated to be 3.36 and 3.73, respectively, for
the g, and g, proposal distributions. How can these numbers be used
to compare the two versions of the Metropolis-Hasting algorithm if

estimation of E[z?| is of interest?

Note: both are squared

(e) If one wants to estimate E[z?], then the variance of the Monte Carlo
estimate converges towards o2[1 +2_ " | p(k)| where 2 corresponds to
the variance for independent samples. The two proposal distributions
give almost similar estimates on the second part, with a small
preference to g,.

One can also look at the effective sample size which is defined as

L
1 +2>:Z‘:1 p(k)

where L is the number of samples used.

- |1+ 2(3.36—1) =5.72 for case 1
1+ Zkzlp(k) = 11+2(3.73 — 1) = 6.46 for case 2
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An alternative to the use of the Metropolis-Hastings algorithm in this case
is the rejection sampling method. Assume g;(x) again is used as proposal

distribution.

(f) Does this proposal distribution meet the requirements
constructing a proper rejection sampling algorithm?

(f) We have that

in2(z) sin2(2: 1 —%x'-’
w(z) —(.blll (z) sin”(2x) =€ 2
91(1-') 1 ‘:%'.”72
;211'016 '
2 -3 [1— 52
=coy sin’(z)sin®(2z)e © 1 < coy

needed for

showing that the ratio has a finite maximum. The requirements needed

are then fulfilled.
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(g) N = 3000 values of xr were generated by this algorithm, giving a mean
number of proposals equal to 16.9.
In order to estimate FE[z?], would you prefer to use one of the
Metropolis-Hastings algorithms or the rejection sampling algorithm.
Justify your answer.

(g) For the M-H with g,, the effective number of samples is estimated to be
10000/5.72 = 1748 samples which is less than  the number of samples
generated by the rejection method. This means that we will get almost two
times reduction in variance using rejection sampling
However, while M-H needed 10000 + 1000 = 11000 samples to be
generated, the rejection sampling required 16.9*3000=50700 samples,
indicating that the computational effort with rejection sampling was
much larger.

An argument towards rejection sampling compared to MCMC is
however that the former is exact!

FRv)



