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Exam spring 2020

• The exam is run as a 7-day individual home exam with all aids 

allowed. The tasks will be similar to a mandatory task. 

Collaboration will not be considered cheating, but you must 

have formulated and written the answer that is submitted, and it 

should reflect your understanding of the syllabus. ). The exam 

is published in Inspera at the original examination date 

(9th of  June) and must be submitted as one PDF file in Inspera

within the same time 7 days later. The faculty works on 

solutions for students who may not have access to a 

computer/network. Please contact administration if you have 

problems.

• STK4051. The grade will be pass/fail, and the limit for passing 

will be 40% (like E at the regular exam)

• STK9051. Ordinary rules for pass/fail will be applied. There will 

be an additional problem for you to solve. 
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Susceptible-Infected-Recovered (SIR)
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From : Jose lourençp, Robert Paton, Mahan Ghafari, Sunetra Gupta  (2020)

Fundamental principles of epidemic spread highlight the immediate need for 

large-scale serological surveys to assess the stage of the SARS-CoV-2 epidemic

DOI: 10.1101/2020.03.24.20042291

[9]: DOI: 10.7554/ELIFE.29820 eLife 2017;6:e29820

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1101%2F2020.03.24.20042291?_sg%5B0%5D=Dea9D3B-Zcm4Pv4g_-mjEhbJWA72fpNDpFUTKdwQDfFCwhkCTwsHZsPKpebSs---_qvaL_9kNr2LNX3TEx8Y1DIvmw.r7uMTwWDvG_ssY8fnXgk0EB8xvA3cWP1ckOqWpnDfDcyare1vBq7jCpfH9urtc3MIzychktRtkCfMfM3kizkkQ
https://doi.org/10.7554/eLife.29820
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Early dynamics of transmission and control of 

COVID-19: a mathematical modelling study
The Lancet Infectious Diseases, (2020)
Adam J. Kucharski, Timothy W. Russell, Charlie Diamond, Yang Liu, John 

Edmunds, Sebastian Funk, Rosalind M. Eggo
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Not fitted. 

Quality issue?



Last time

• Recap

– Irreducible / aperiodic/ recurrent

– Limiting distribution = stationary distribution

– Reparameterization

– The Gelman-Rubin diagnostic (Monte Carlo variance)

• Advanced topics

– Adaptive MCMC

– Multiple-Try M-H 

– Slice sampler

– Simulated tempering

– Reversible Jump MCMC (model selection)

– Langevin

– Hamiltonian  
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Question 

• In the book Chapter 7 it appears that it is 

sufficient that the Markov chain is irreducible 

and aperiodic what happened to recurrent? 

• Answer: Read also section 1.7  in book, here 

the term recurrent  appears. The distinction is 

related to  state space that are infinite. 

• Example: random walk in 𝑅𝑑 , 𝑑 ≥ 3
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Example: improper prior

• 𝑓 𝒙 ∝ 1 , 𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3

• 𝑝 𝒙∗ 𝒙 = 𝜙 𝑥1
∗; 𝑥1, 1 ⋅ 𝜙 𝑥2

∗; 𝑥2, 1 ⋅ 𝜙(𝑥3
∗; 𝑥3, 1)

• Irreducible? (possible to reach any point  with a finite 

number of steps)

– Yes,  there is a positive probability for any set of non-zero 

measure in one step.

• Aperiodic?

– Yes, any non zero set can be reached at any time 

• Detailed balance?

– Yes we have 𝑝 𝒙∗ 𝒙 𝑓(𝒙)=𝑝 𝒙 𝒙∗ 𝑓(𝒙∗)

• So what could go wrong?? 

– The chain is not recurrent
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Example  random walk in 𝑅3
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If you get sample paths 

like these, you might 

have a recurrence issue

Perhaps your target 

distribution is not a 

proper distribution 

[not easy to tell upfront]

If you safe guard 

yourself against zero 

density regions by 

setting a minimum 

density value. 

[you get into trouble]



Bayesian inference

• Assume observations 𝒙, variables of interest 𝒛

• 𝒛 may include parameters and/or latent variables

• Core: Posterior distribution

𝑝 𝒛 𝒙 =
𝑝 𝒛, 𝒙

𝑝 𝒙

• Inference:

𝐸[ℎ(𝒛)|𝒙] = න
𝒛

ℎ(𝒛)𝑝(𝒛|𝒙)𝑑𝒛

• 𝑝(𝒛|𝒙) can be very complex and high dimensional

• No “black box” algorithm to solve “all problems”

– Need diagnostics / burn in / effective number of samples

• Standard" methods such as MCMC do not scale well with big data
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Variational Inference
• Main source: Blei et al. (2017) Variational inference: A review for statisticians. JASA
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This integral is «easy»

This optimization 

must be solved



Variational inference

• Replace a «hard integral» 

with an «easy integral» 

and optimization

• Approximation without «general bounds» on error

– Often: preserve the mean but not the variance

• We need: 

– 𝒟 a distance measure between distributions (KL-divergence)

– 𝒬 class of distributions   (often: independent & Gaussian)
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𝐸[ℎ(𝒛)|𝒙] = න
𝒛

ℎ(𝒛)𝑝(𝒛|𝒙)𝑑𝒛

𝐸 ℎ 𝒛 𝒙 ≈ න
𝒛

ℎ 𝒛 𝑞∗(𝒛)𝑑𝒛



Kullback-Leibler divergence

𝒟 𝑞 𝒛 , 𝑝 𝒛 𝒙

= KL 𝑞(𝒛)|| 𝑝(𝒛|𝒙) = න
𝑧

log
𝑞 𝒛

𝑝 𝒛 𝒙
𝑞 𝒛 𝑑𝒛

= 𝐸𝑞 log 𝑞(𝒁) − 𝐸𝑞 log 𝑝 𝒁 𝒙

• Properties:

– KL 𝑞 𝒛 ||𝑝 𝒛 𝒙 ≥ 0

– KL 𝑞 𝒛 ||𝑝 𝒛 𝒙 = 0 ⇔ 𝑞 𝒛 = 𝑝 𝒛 𝒙

– KL 𝑞(𝒛)|| 𝑝(𝒛|𝒙) ≠ KL 𝑝(𝒛|𝒙)|| 𝑞(𝒛) (not symmetric)

– Not a metric
15

If 𝑝 𝒛 𝒙 is zero and 

𝑞 𝒛 is positive  

If 𝑝 𝒛 𝒙 is positive and 

𝑞 𝒛 is zero  



Asymmetry of Kullback Lieibler divergence

𝑝 𝒛 ∼ 𝑁 𝜇𝑝, Σ𝑝 , where 𝒛 ∈ ℝ𝑑

𝑞 𝒛 ∼ 𝑁 𝜇𝑞 , Σ𝑞 , where Σ𝑞 is diagonal

Find 𝜇𝑞, and diagonal Σ𝑞 which minimizes:

* Problem 1  (Variational inference- VI)
min
q

KL 𝑞 𝒛 ||𝑝(𝒛) = min
q

𝐸𝑞 log 𝑞(𝒁) − 𝐸𝑞 log 𝑝(𝒁)

=>       𝐸𝑞 𝑧𝑘 = 𝐸𝑝(𝑧𝑘), Var𝑞(𝑧𝑘) = Var𝑝(𝑧𝑘|𝑧−𝑘)

* Problem 2 (Expectation propagation- EP)
min
q

KL 𝑝 𝒛 ||𝑞(𝒛) = min
q

𝐸𝑝 log 𝑝(𝒁) − 𝐸𝑝 log 𝑞(𝒁)

=>      𝐸𝑞 𝑧𝑘 = 𝐸𝑝(𝑧𝑘), Var𝑞(𝑧𝑘) = Var𝑝(𝑧𝑘)

16



VI vs EP
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GT

EP

VI

Ground truth: 

Bi-normal

Correlation 0.95

Contours at 1 and 2 standard deviations



Computations:  Variational inference

𝑝 𝒛 ∼ 𝑁 𝜇𝑝, Σ𝑝 , where 𝒛 ∈ ℝ𝑑

𝑞 𝒛 ∼ 𝑁 𝜇𝑞 , Σ𝑞 , where Σ𝑞 is diagonal

KL 𝑞 𝒛 ||𝑝(𝒛) = 𝐸𝑞 log 𝑞(𝒁) − 𝐸𝑞 log 𝑝(𝒁)

log 𝑞(𝒛) = −
1

2
log Σ𝑞 −

𝑑

2
log 2𝜋 −

1

2
𝒛 − 𝝁𝒒

𝑇
𝜮𝑞
−1(𝒛 − 𝝁𝒒)

𝐸𝑞 𝒛 − 𝝁𝒒
𝑇
𝜮𝑞
−1(𝒛 − 𝝁𝒒) = 𝑇𝑟 𝜮𝑞

−1𝐸𝑞 𝒛 − 𝝁𝒒 𝒛 − 𝝁𝒒
𝑇

= 𝑇𝑟 𝜮𝑞
−1𝚺𝑞 = 𝑇𝑟 𝑰 = 𝑑

𝐸𝑞 log 𝑞(𝒁) = −
1

2
log Σ𝑞 −

𝑑

2
log 2𝜋 −

𝑑

2 18

𝐸𝑞 log 𝑞(𝒁) : 



𝐸𝑞 log 𝑝(𝒁) :

log 𝑝(𝒛) = −
1

2
log Σ𝑝 −

𝑑

2
log 2𝜋 −

1

2
𝒛 − 𝝁𝒑

𝑇
𝜮𝑝
−1(𝒛 − 𝝁𝒑)
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𝐸𝑞 𝒛 − 𝝁𝒑
𝑇
𝜮𝑝
−1(𝒛 − 𝝁𝒑) = 𝑇𝑟 𝜮𝑝

−1𝐸𝑞 𝒛 − 𝝁𝒑 𝒛 − 𝝁𝒑
𝑇

= 𝑇𝑟 𝜮𝑝
−1𝐸𝑞 𝒛 − 𝝁𝒒 + 𝝁𝒒 − 𝝁𝒑 𝒛 − 𝝁𝒒 + 𝝁𝒒 − 𝝁𝒑

𝑇

= 𝑇𝑟 𝜮𝑝
−1𝐸𝑞 (𝒛 − 𝝁𝒒) + (𝝁𝒒−𝝁𝒑) (𝒛 − 𝝁𝒒) + (𝝁𝒒 − 𝝁𝒑)

𝑇

= 𝑇𝑟 𝜮𝑝
−1𝐸𝑞 𝒛 − 𝝁𝒒 𝒛 − 𝝁𝒒

𝑻
+ 𝒛 − 𝝁𝒒 𝝁𝒒 − 𝝁𝒑

𝑻
+ 𝝁𝒒 − 𝝁𝒑 𝒛 − 𝝁𝒒

𝑻
+ 𝝁𝒒 − 𝝁𝒑 𝝁𝒒 − 𝝁𝒑

𝑻

= 𝑇𝑟 𝜮𝑝
−1𝚺𝑞 + 𝝁𝒒 − 𝝁𝒑

𝑻
𝜮𝑝
−1 𝝁𝒒 − 𝝁𝒑

E()=0 E()=0E()=Σ𝑞

𝐸𝑞 log 𝑝(𝒁) = −
1

2
log Σ𝑝 −

𝑑

2
log 2𝜋 −

1

2
𝑇𝑟 𝜮𝑝

−1𝚺𝑞 −
1

2
𝝁𝒒 − 𝝁𝑝

𝑇

𝜮𝑝
−1 𝝁𝑞 − 𝝁𝑝



𝑝 𝒛 ∼ 𝑁 𝜇𝑝, Σ𝑝 , where 𝒛 ∈ ℝ𝑑

𝑞 𝒛 ∼ 𝑁 𝜇𝑞 , Σ𝑞 , where Σ𝑞 is diagonal

KL 𝑞 𝒛 ||𝑝(𝒛) =

−
1

2
log 𝚺𝑞 −

𝑑

2
+

1

2
log 𝚺𝑝 +

1

2
𝑇𝑟 𝜮𝑝

−1𝚺𝑞 +
1

2
𝝁𝒒 − 𝝁𝑝

𝑇
𝜮𝑝
−1 𝝁𝑞 − 𝝁𝑝
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𝜕KL 𝑞 𝒛 ||𝑝(𝒛)

𝜕𝜇𝑞
:  𝜮𝑝

−1 𝝁𝑞 − 𝝁𝑝 = 0 ⇒ 𝝁𝑞 = 𝝁𝑝

𝜕KL 𝑞 𝒛 ||𝑝(𝒛)

𝜕Σ𝑞
: −

1

2
𝚺𝑞
−1 − 𝚺𝑝

−1 = 0 , (but only for diagonal elements)

Solution:

since Σ𝑞 is diagonal

𝐸𝑞 𝑧𝑘 = 𝐸𝑝(𝑧𝑘)
Var𝑞(𝑧𝑘) = Var𝑝(𝑧𝑘|𝑧−𝑘)



Independent Gaussian approximation 

to a general Gaussian
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𝐸𝑞 𝑧𝑘 = 𝐸𝑝(𝑧𝑘)
Var𝑞(𝑧𝑘) = Var𝑝(𝑧𝑘|𝑧−𝑘)

𝑝 𝒛 ∼ 𝑁 𝜇𝑝, Σ𝑝 , where 𝒛 ∈ ℝ𝑑

𝑞 𝒛 ∼ 𝑁 𝜇𝑞 , Σ𝑞 , where Σ𝑞 is diagonal

Match the mean   

Underestimate the variance  

This is due to the direction we define the KL divergence:

• Avoid «low probability» regions

• Little penalty for not including «high probability» regions

Is this what we want?



Variational inference

• General set up

• If we can make 𝒬 sufficiently general we can make 

as good approximations as we like

• When people talk about VI, they often mean:

– 𝒬 – Mean field approximation, (independence structure)

– They maximize the ELBO which is equivalent to

𝒟 𝑞, 𝑝 = 𝐾𝐿(𝑞| 𝑝

• Much «common knowledge» of VI is related to this 

particular choice 22

𝐸 ℎ 𝒛 𝒙 ≈ න
𝒛

ℎ 𝒛 𝑞∗(𝒛)𝑑𝒛



The evidence lower bound (ELBO)
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𝑝 𝒛 𝒙 =
𝑝 𝒛, 𝒙

𝑝 𝒙

Log-evidence, not 

dependent on 𝒛

The evidence 𝑝(𝒙) is the normalizing factor of Bayesian statistics

Since KL is always positive. If KL is zero we have equality

ELBO(𝑞) ≤ log 𝑝(𝒙) (hence the name)

𝑝(𝒛, 𝒙) implied 



ELBO practical use
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𝑝 𝒛, 𝒙 = 𝑝 𝒙 𝒛 ⋅ 𝑝 𝒛

Maximum when: (including sign) 

𝑞 𝒛 = 𝑝(𝒛)
Is maximum when

𝑞 𝒛 ∝ 𝑝 𝒙 𝒛

Trade off between likelihood and prior

Common in Bayesian  statistics 

KL 𝑞 𝒛 ||𝑐 ⋅ 𝑝 𝒙 𝒛 ≥ 0

⇕
𝐸𝑞 log 𝑞(𝒁) ≥ 𝐸𝑞 log(𝑐 ⋅ 𝑝 𝒙 𝒁 )



So what ?

• So far we have established that  maximizing the 

ELBO gives a trade off between prior and posterior

• But we already knew that ELBO is maximized with

the posterior:

• So what have we achieved?

– A variational form for the approximation

• We now restrict the class of distributions  to  𝒬 so 

that integrals are easy to compute  thus 𝑝(𝒛|𝒙) is not 

in 𝒬
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Mean field variational familiy
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Example mixture Gaussian
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Optimization - CAVI

• ELBO q = 𝐸𝑞 log 𝑝 𝒁, 𝒙 − 𝐸𝑞 log 𝑞(𝒛)

• Optimize one 𝑞𝑗(𝑧𝑗) at the time keep the others fixed

28

min
qj

𝐸𝑞 log 𝑝 𝒁, 𝒙 − 𝐸𝑞 log 𝑞 𝒛

min
qj

𝐸𝑧𝑗
𝑞

𝐸𝑧−𝑗
𝑞
(log 𝑝 𝒁, 𝒙 ) − 𝐸𝑧𝑗

𝑞
log 𝑞𝑗 𝑧𝑗 + const

= log 𝑞𝑗 𝑧𝑗 + const

𝑞𝑗 𝑧𝑗 ∝ exp 𝐸𝑧−𝑗
𝑞
(log 𝑝 𝒁, 𝒙 )



Optimization - CAVI
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Example - updating for 𝑐𝑖 :

30

log 𝑝(𝝁 ) +



Example, updating for 𝜇𝑘

31

Independence in q



Example - calculating ELBO
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+const

+const

+const



Implementation ELBO- CAVI
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VI_mix_dim1.R



Different initializations may lead 

CAVI to find different 

local optima of the ELBO
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Theory Results on the following type:

• Treat VI posterior means as point estimates

• Bayesian linear models: VI posterior means are consistent

• Poisson-mixed model with Gaussian VI 

– Consistency and asymptotic normality

• Network data with stochastic block models: Asymptotic 

normality (which might not be the case for ML estimates!)

• Gaussian variational approximations: Asymptotic 

covariance matrix estimator

• Mixture of Gaussians: CAVI converges to local optimum, VI 

estimator is consistent, VI posterior variance too small.
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Extensions and open problems

• Other distance measures than KL 

• Alternatives to mean-field

– Add dependencies between variables: structured 

variational inference

– Mixtures of variational densities

• Interface between VI and MCMC

• Statistical properties
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VI compared to ML/MAP estimation

• VI retain Bayesian inference ideas but neglect correlations 

between parameters

• ML/MAP retain the model but neglect the uncertainty in the 

parameters,

• MCMC retain both.

• Expectation propagation is an other alternative

(Minka 2001 & Hernández-Lobato et al., 2015)
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McMC vs variational inference
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Reference
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T.P Minka, “Expectation Propagation for Approximate Bayesian Inference,” 

in Uncertainty in Artificial Intelligence, pp. 362–369. [860,873], 2001


