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Problem 1.  (Monte Carlo integration / Variational inference )  When encountering problems 

in variational inference, we measure distance between two distributions, 𝑞(𝑥), 𝑝(𝑥) with the 

Kullback–Leibler divergence, which is defined as: 

                        𝐾𝐿(𝑞||𝑝) = ∫ log 𝑞(𝒙) 𝑞(𝑥) 𝑑𝒙 − ∫ log 𝑝(𝒙) 𝑞(𝒙) 𝑑𝒙                                        (1) 

     = 𝐸𝑞{log(𝑞(𝑿)) − log 𝑝(𝑿)}           

For complex distributions, this integral is not easily accessible.  We will now consider a target 

distribution being the bivariate normal distribution with unit variance and mean zero. This 

distribution is defined as:   

                                            𝑝(𝒙) =
1

2𝜋√|Σ|
exp {−

1

2
𝒙𝑻Σ−1 𝒙}                                                      (2) 

where 

                                                              Σ = [
1 𝜌 
𝜌 1

].                                                                              (3) 

In a standard approach to variational inference we consider the mean field approximation where 

we look for a solution of the form:  

                                                     𝑞(𝑥) = 𝑞1(𝑥1) ⋅ 𝑞2(𝑥2).                                                                  (4) 

Which means that we are looking for a distribution with independent components, specifically 

we are looking for solutions where 𝑞𝑗(𝑥𝑗) = 𝜙(𝑥𝑗; 𝜇𝑗 , 𝜎𝑗
2 ), with  𝜙(𝑥; 𝑎, 𝑏2)  being the normal 

density; mean 𝑎 and variance 𝑏2. Hint: You can use a library to evaluate the multivariate 

density, e.g.  dmvnorm in the  mvtnorm package.  

a) Let 𝜌 = 0.9,   𝜇1 = 𝜇2 = 0 and 𝜎1 = 𝜎2 = 1.  

Make a function which evaluates the Kullback–Leibler divergence 𝐾𝐿(𝑞||𝑝) using Monte 

Carlo integration. How many samples do you need to have a result with Monte Carlo 

variability less than 0.01? (Here variability is measured in terms of standard deviation.) 

 

b) It is possible to show that the Kullback–Leibler divergence has its minimum for  𝜇1 = 𝜇2 =

0, and  𝜎1 = 𝜎2 = √1 − 𝜌2.  In light of this result, discuss strengths and weaknesses of an 

analysis based on mean field variational inference.     
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The rest of problem 1 is for STK 9051 only. An algorithm for deriving the mean field 

approximation in the general case, is to use coordinate ascent variational inference, i.e. the 

CAVI algorithm. A version of the CAVI algorithm is detailed below.   

Algorithm 1  (CAVI) 

1) Initialize  𝑞2
(0)(𝑥) = 𝜙(𝑥; 𝑎, 𝑏2),  

2) While not converged  iterate: 

a. Set 𝑞1
(𝑖)(𝑥1) ∝ exp{𝐸

𝑞2
(𝑖−1)(log 𝑝(𝑥1|𝑥2) )} 

b.  Set 𝑞2
(𝑖)(𝑥2) ∝ exp{𝐸

𝑞1
(𝑖)(log 𝑝(𝑥2|𝑥1) )} 

 

c) (STK 9051 only). We will now analyze use of this algorithm for the distribution 𝑝(𝒙) in 

(2).  Start off with 𝑞2
(0)(𝑥) = 𝜙(𝑥; 1,12). Compute   𝑞1

(1)(𝑥), and derive  𝑞𝑗
(𝑛)(𝑥). Comment 

on the result. You can use without proof (if needed) that:  

                                 log 𝑝(𝑥𝑖|𝑥𝑗) = 𝑐𝑜𝑛𝑠𝑡 −
1

2

(𝑥𝑖 − 𝜌𝑥𝑗)
2

1 − 𝜌2
                                                          (5) 

 

Problem 2 (Model selection).  The problem of model selection is NP- hard, thus we need 

heuristic algorithms to find good solutions. The genetic algorithm is inspired by natural 

selection.  

a) Describe the main elements in a Genetic algorithm.  

  

b) Implement a genetic algorithm for identifying the optimal model using the AIC “An 

information Criterion” to select model.  You can use the file baseball_genetic.R on 

the course webpage for inspiration, but retain only the parts the code that you actually 

present in text. That is explain each part in the algorithm, such that it can be recognized in 

the code. Apply the code to the diabetes data set diabetesEx2.dat.   [no extra points 

for using  a complex solution] 

 

c) The problem of model selection, is standard in statistics. When considering Bayesian model 

selection, the standard McMC methods can’t be applied directly. Which feature of model 
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selection is it that complicates the situation for standard McMC algorithms? Do you know 

any algorithms which can be used to solve this problem?  

 

Problem 3, (EM algorithm) We consider iid data, 𝑦𝑖, 𝑖 = 1, … , 𝑛,  from a mixture distribution 

                                         𝑝(𝑦) = 𝜈 ⋅ 𝜙(𝑦; 𝜇, 1) + (1 − 𝜈 )𝜙(𝑦; −𝜇, 1)                                      (6) 

Where   0 < 𝜈 < 1, 𝜙(𝑥; 𝑎, 𝑏2)  denote the normal density, with mean 𝑎 and variance 𝑏2, and 

the parameter  𝜇 gives the separation of the modes.   We will now derive the estimate for the 

parameters 𝜃 = (𝜈 , 𝜇), using the EM algorithm. 

a) Set up the expression for the complete likelihood using a hidden variable 𝐶𝑖, which 

indicates the class membership of data 𝑦𝑖. 

b) Give an expression for the 𝑄(𝜃|𝜃(𝑡)) function, and use this to set up the EM algorithm for 

estimation. Show in particular that : 

                 𝑃(𝐶𝑖|𝑦𝑖 , 𝜈(𝑡), 𝜇(𝑡)  ) =
𝜈(𝑡)𝜙(𝑦𝑖, 𝜇(𝑡), 1)

𝜈(𝑡)𝜙(𝑦𝑖, 𝜇(𝑡), 1) + (1 − 𝜈(𝑡))𝜙(𝑦𝑖, −𝜇(𝑡), 1)
                (7) 

 

c) Implement the estimator and apply it to the dataset EM_mixture.dat. What are the final 

estimates?  

 

d) In the case where the class membership is known the standard deviation of the estimators 

are 0.016 and  0.040 for 𝜈 and 𝜇 respectively. The estimators are also independent. 

Implement the bootstrap estimate of the uncertainty of the parameters using the EM 

algorithm. Make a scatterplot of 500 resamples. Comment on the results, also in relation to 

the uncertainty in the complete likelihood.  

  

Problem 4(Gibbs sampler) Problem 3's parameter estimation, can also be solved using 

Bayesian methodology.  The posterior distribution can be sampled using a Gibb sampler with 

a set of augmented variables.  Introduce the class memberships as an augmented variable 

set 𝐶𝑖, 𝑖 = 1, … , 𝑛.  

a) Derive the expressions for 𝑃(𝐶𝑖|𝑦𝑖 , 𝜈, 𝜇), 𝑝(𝜈|𝑦𝑖 , 𝐶𝑖, 𝜇) and, 𝑝(𝜇|𝑦𝑖 , 𝐶𝑖, 𝜈 ).  Show how this 

can be used to sample the posterior distribution of 𝜈 and 𝜇. [Hint: use results from problem 

3, and use properties of conditional independence when conditioning to membership 
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variables  𝐶𝑖, 𝑖 = 1, … , 𝑛. The probability density of the beta distribution 𝑓(𝑥; 𝑎, 𝑏) with 

shape parameters (𝑎, 𝑏) has the form: 𝑓(𝑥; 𝑎, 𝑏) ∝ 𝑥𝑎−1(1 − 𝑥)𝑏−1.] 

 

b) Implement the Gibbs sampler and apply it to the data set EM_mixture.dat.  Select the 

prior distribution as you see fit, but give an argument for your choice. Let the number of 

samples of each variable be 1100.  

 

c) Discuss the two concepts “burn in” and “effective sample size".  Is a bur in of 100 sample 

sufficient for your chain above? Compute the effective sample sizes for 𝜇  and 𝜈.  

 

Problem 5 (STAN) The library rstan uses Hamiltonian Monte Carlo as a generic tool for 

implementing Bayesian inference.  The stan program below defines a statistical model with 

data x, and parameters nu, mu1, and mu2. The stan program is also available in the file 

Oppg5.stan. 

data{     

int<lower=1> N;     

real X[N]; 

} 

parameters{     

real<lower=0,upper=1> nu;     

real <lower=0> mu1;  

real <upper=0> mu2; 

} 

model{     

for(i in 1:N){      

  target+=log(nu*exp(normal_lpdf(X[i]|mu1,1))+(1-nu)*exp(normal_lpdf(X[i]|mu2,1))); 

} 

} 

a) The program implies a prior for the parameters and a likelihood for the data. State these 

statistical models.  

 

b) Run the model using N=625, and X from EM_mixture.dat. Show a scatterplot of mu1 

and mu2. 


