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Last time

• Examples IRLS, combinatorial optimization

• EM algorithm

– Missing data (Moths)

– Hidden structure (mixture Gaussian - Galaxy)

– Proof of increasing log likelihood
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log 𝑓𝑥(𝑥|𝜃
𝑡+1 ) > log 𝑓𝑥(𝑥|𝜃

𝑡 )

𝑄 𝜽 𝜽 𝑡 = 𝐸 log 𝑓𝑌 𝒚 𝜽 | 𝒙, 𝜽(𝑡)



Today

• EM in Exponential family

• Bootstrap

• Variance estimate in EM

• EM for hidden Markov model

• Stochastic gradient decent
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EM recap

• Notation: 

– 𝒀 = (𝑿, 𝒁) are complete data

– 𝑿 observed, 

– 𝒁 missing 

– Have 𝑓𝑌(𝒚|𝜽)

– Want      max
𝜃

𝑓𝑋(𝒙|𝜽)

𝑓𝑋(𝒙|𝜽) = න
𝑧

𝑓𝑌(𝒙, 𝒛|𝜽)𝑑𝑧

𝑓𝑋 𝒙 𝜽 =
𝑓𝑌 𝒚 𝜽

𝑓𝑧|𝑥 𝒛 𝒙, 𝜽
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Marginal likelihood

Complete likelihood

𝑄 𝜽 𝜽 𝑡 = 𝐸[log 𝑓𝑌 𝒚 𝜽 𝒙, 𝜽 𝑡

Expected value of the complete log  likelihood 

given the observed data 

using the current estimate of the parameter

We maximize:



EM in exponential family

Why?  We can do 

computations in advance 

and just identify terms 

afterwards

Simplifies a lot of 

standard problems
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The EM algorithms in exponential families E & M

What is this?

𝒄2
′ (𝜃)

𝑐2 𝜃
= −𝐸 𝑠 𝑌 ; 𝜃

∫ 𝑠 𝑦 𝑓𝑧|𝑥 𝑧|𝑥, 𝜃(𝑡) 𝑑𝑧 = 𝐸 𝑠 𝑌 ;𝜃

𝜕

𝜕𝜃
𝑄 𝜃 𝜃 𝑡 = 0

71st term: Multiply with  
𝑐2 𝜃

𝑐2 𝜃
and put 

𝒄𝟐
′ 𝜃

𝑐2 𝜃
outside 

integral, What remains inside integrates to 1   



Results 
Compute this integral with your old theta

A bit sloppy an deceiving to say that this is 

the E-step  the real E-step  is: 

to maximize:

In the exponential family it turns out  that 

what you need for computations is           

the expectation of the sufficient statistics

𝑄 𝜽 𝜽 𝑡 = 𝐸 log𝑓𝑌 𝒚 𝜽 | 𝑥, 𝜃(𝑡)
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𝐸[𝑠 𝒀 |𝒙, 𝜃] is the conditional expectation of the missing data given

the observed data.

𝐸[𝑠 𝒀 |𝜃] is the unconditional expectation of the complete data



Variance estimate in EM  (4.2.3.4) 

• Many approaches

• Bootstrapping  (4.2.3.3 for EM)

– General approach (9.1 & 9.2)

• Approximation using, information matrix   

var ( 𝜃) ≈ 𝑱𝑋 𝜽 −1

– 𝑱𝑋 𝜽 = −ℓ′′(𝜽|𝒙) (observed information matrix)

– Louis method  (4.2.3.1), Just the part about 

complete and missing information

– The SEM algorithm (4.2.3.2)

– Empirical information (4.2.3.4)

– Numerical Differentiation (4.2.3.5)
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Bootstrapping  (9.1-9.2.2)
General for exchangeable  observations (𝒙𝟏, … , 𝒙𝒏), 

e.g. iid from 𝑓 𝒙 𝜃 )

The target parameter is 𝜃 = 𝑇(𝐹)

We make the estimate መ𝜃 = 𝑇 𝐹 (plug in)

or just መ𝜃 = 𝑅(𝒙𝟏, … , 𝒙𝒏)  (some function of data)

• In frequentist inference, the randomness in the estimator comes

form the uncertainty in the sampled values. This uncertainty is 

modelled by the probability density 𝑓 𝒙 𝜃 ). 

• We could compute the uncertainty  by generating many 

samples from 𝑓 𝒙 𝜃 ), and recompute the estimator, 

– but we need many samples from true distribution, we only have one 

– And we do not know the value of 𝜃 .  

• Two solutions

– We can get approximate sample from 𝐹 𝒙 [nonparametric bootstrap]

– We can sample from the distribution 𝑓 𝒙 𝜃) [parametric bootstrap]
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𝐹 𝒙 =
1

𝑛


𝑖=1

𝑛

𝐼(𝒙𝑖 < 𝒙)



Example: In a symmetric distribution

should you estimate the center using

the mean or the median?

• If data have a normal distribution the theory

says mean.

• But what if the distribution is not known to be

normal?
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Bootstrap code:Case 1: normal Case 2 Student-t
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Bootstrapping EM algorithm

• General Bootstrap

• We have 𝜽 = 𝜽 𝒙𝟏, … , 𝒙𝒏 , i.e. a way to compute an estimate

• Algorithm: 
– For j=1,…,B

• Generate sample {𝒙𝟏
∗ , … , 𝒙𝒏

∗ } , from an approximation of 𝑓𝑋(𝒙|𝜃) (parametric / nonparametric)

• Calculate 𝜽𝒋 = 𝜽 𝒙𝟏
∗ , … , 𝒙𝒏

∗

– 𝜽𝒋 𝑗=1

𝐵
can be seen as a samples from the sampling distribution of 𝜽

• Compute variance, quantiles, etc.  empirically from 𝜽𝒋 𝑗=1

𝐵

• For the EM algorithm 
– 𝜽 𝒙𝟏, … , 𝒙𝒏 is computed by EM algorithm, 𝜽 𝐸𝑀 𝒙𝟏, … , 𝒙𝒏

– Parametric: Sample 𝒚𝟏
∗ , … , 𝒚𝒏

∗ iid ~ 𝑓𝑌(𝒚|𝜃), keep only 𝒙, i.e. 𝒙𝟏
∗ , … , 𝒙𝒏

∗

– Nonparametric: Sample {𝒙𝟏
∗ , … , 𝒙𝒏

∗ }with replacement from {𝒙𝟏, … , 𝒙𝒏}
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Missing information (4.2.3.1)

ቚ−ℓ′′ 𝜽 𝒙 = −𝑸′′ 𝜽 𝝎
𝝎=𝜽

+ ቚ𝑯′′ 𝜽 𝝎
𝝎=𝜽

𝑱𝑿 𝜽 = 𝑱𝒀 𝜽 − 𝑱𝒁|𝑿(𝜽)

ℓ 𝜽 𝒙 = 𝑄 𝜽 𝜽(𝒕) − 𝐻 𝜽 𝜽(𝒕)

Observed information Complete information Missing information

So you do not 

differentiate with 

respect to 

second 

argument

• Nice way of understanding the information loss in missing data

• Sometimes easier to compute 𝑱𝒀 𝜽 and 𝑱𝒁|𝑿(𝜽)
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Empirical information

But how do we

compute ℓ′(𝜽|𝒙)?
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Computing the score function in EM

ℓ 𝜽 𝒙 = 𝑄 𝜽 𝜽(𝒕) − 𝐻 𝜽 𝜽(𝒕)

𝜕

𝜕𝜽
(𝑄 𝜽 𝜽(𝒕) - ℓ 𝜽 𝒙 ) = 𝟎
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𝐶1 𝐶2 𝐶3

EM-Hidden Markov model
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EM - Hidden Markov model
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General idea in hidden Markov Model

• We compute «forward»   (filtering)

• Then we compute backward  (smoothing)

• At the end we combine to get 

𝑃(𝐶𝑖 , 𝐶𝑖−1|𝒙1:𝑛)
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𝑃(𝐶𝑖|𝒙1:(𝑖−1))

𝑃(𝐶𝑖|𝒙1:𝑛)

𝑃(𝐶𝑖|𝒙1:𝑖)𝑃(𝐶𝑖−1|𝒙1:(𝑖−1)) 𝑃(𝐶𝑖+1|𝒙1:𝑖) 𝑃(𝐶𝑛|𝒙1:𝑛)

Update Predict Update Predict Update 

Any time All data

…

𝑃(𝐶𝑖|𝒙1:𝑛) 𝑃(𝐶𝑖−1|𝒙1:𝑛)𝑃(𝐶𝑖+1|𝒙1:𝑛) 𝑃(𝐶1|𝒙1:𝑛)…



Hidden Markov model
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𝐶1 𝐶2 𝐶3



HMM forward equations
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Backward equations
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Expand

Recognize

Bayes formula

Recognize

= 𝑃(𝐶𝑖+1 = 𝑙|𝐶𝑖 = 𝑘)

Because of the Markov structure



Sequence probability
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Recognize

Bayes formula

Recognize



HMM - M-step
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