
$\mathrm{UiO}:$ Matematisk institutt
Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 SGD

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Det matematisk-naturvitenskapelige fakultet

Stochastic gradient decent

- Existed for many years (Robbins and Monro, 1951, reprinted 1985)
- Received renewed attention due to its importance in fitting deep neural networks.
- A thourough discussion of the algorithm is given in Bottou et al. (2018) while a broader discussion on stochastic optimization methods in general is given in Spall (2005).
- Aim: minimize some $F(\theta)$ with respect to θ.
- Empirical risk:

$$
F(\theta)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta)+J(\theta)
$$

with many possible options for $f_{i}(\theta)$, e.g.

$$
f_{i}(\theta)= \begin{cases}\left(\hat{y}_{i}-y_{i}\right)^{2} & \text { Least squares; } \\ I\left(\hat{y}_{i} \neq y_{i}\right) & \text { Classification error } \\ -\log f\left(y_{i} ; \theta\right) & \text { log-likelihood }\end{cases}
$$

- Alternative: Expected risk

$$
F(\theta)=E[f(\theta ; \varepsilon)], \quad \varepsilon \text { is some random vector }
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Main Idea

- $F(\cdot)$ is nice and smooth, a necessary requirement is

$$
\begin{equation*}
\boldsymbol{g}\left(\theta^{*}\right)=\left.\frac{\partial}{\partial \theta} F(\theta)\right|_{\theta=\theta^{*}}=\mathbf{0} \tag{1}
\end{equation*}
$$

- Ordinary gradient descent methods:

$$
\theta^{t+1}=\theta^{t}-\boldsymbol{M}_{t}^{-1} \boldsymbol{g}\left(\theta^{t}\right), \quad \boldsymbol{M}_{t} \text { is some positive definite |matrix }
$$

- Main problem: gradient might be difficult to compute.
- The stochastic gradient algorithm replaces the gradient by an estimate instead:

$$
\begin{equation*}
\theta^{t+1}=\theta^{t}-\alpha_{t} \boldsymbol{M}_{t}^{-1} \boldsymbol{Z}\left(\theta^{t} ; \boldsymbol{\phi}^{t}\right), \quad \boldsymbol{Z}\left(\theta^{t} ; \boldsymbol{\phi}_{\mathbf{t}}^{t}\right) \approx \boldsymbol{g}\left(\theta^{t}\right) \tag{2}
\end{equation*}
$$

- A class of possibilities are given by
«some stochastic element»

$$
\boldsymbol{Z}\left(\theta^{t} ; \boldsymbol{\phi}^{t}\right)=\frac{1}{n_{t}} \sum_{i \in \mathcal{S}_{t}} \nabla f_{i}\left(\theta^{t}\right), \quad \mathcal{S}_{t} \subset\{1, \ldots, n\}, n_{t}=\left|\mathcal{S}_{t}\right| \quad \quad " \phi^{t}=\mathcal{S}_{t} "
$$

- Algorithm:

1: for $t=1,2, \ldots$ do
2: \quad Simulate the stochastic gradient $Z\left(\theta^{t} ; \phi^{t}\right)$;
Choose a stepsize α^{t};
Update the new value by $\theta^{t+1} \leftarrow \theta^{t}-\alpha_{t} \boldsymbol{M}_{t}^{-1} Z\left(\theta^{t} ; \boldsymbol{\phi}^{t}\right)$.
end for

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Example

- Logistic regression with n large:

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Binomial}\left(1, p\left(x_{i}\right)\right), \quad i=1, \ldots, n \\
p(x) & =\frac{\exp \left(\theta_{0}+\theta_{1} x\right)}{1+\exp \left(\theta_{0}+\theta_{1} x\right)}
\end{aligned}
$$

```
#lnitialization
b = c(0,1) #lnitial value
N.it = 1000 #Number of iterations
k = 10 #Number of samples for estimating gradient
#SG-loop
for(it in 1:N.it)
{
    i = sample(1:n,k)
    alpha = 10/it
    p.i = exp(b[1]+b[2]*x[i])/(1+exp(b[1]+b[2]*x[i]))
    g = colMeans(cbind(y[i]-p.i,(y[i]-p.i)*x[i]))
    b = b + alpha*g
}
```

- Want to minimize

$$
\begin{aligned}
F(\theta) & =-\sum_{i=1}^{n}\left[y_{i} \log \left(p_{i}\right)+\left(1-y_{i}\right) \log \left(1-p_{i}\right)\right] \\
& =-\sum_{i=1}^{n}\left[y_{i}\left(\theta_{0}+\theta_{1} x_{i}\right)-\log \left(1+\exp \left(\theta_{0}+\theta_{1} x_{i}\right)\right)\right] .
\end{aligned}
$$

- Defining

$$
f_{i}(\theta)=-y_{i}\left(\theta_{0}+\theta_{1} x_{i}\right)+\log \left(1+\exp \left(\theta_{0}+\theta_{1} x_{i}\right)\right)
$$

we have

$$
\nabla f_{i}(\theta)=-\binom{y_{i}-\frac{\exp \left(\theta_{0}+\theta_{1} x_{i}\right)}{1+\exp \left(\theta_{0}+\theta_{1} x_{i}\right)}}{\left[y_{i}-\frac{\exp \left(x_{0}+\theta_{i}\right.}{1+\exp \left(\theta_{0}+\theta_{1} x_{i} x_{i}\right)}\right] x_{i}}
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Convergence in example

Convergence of SGD

- Want to show that the SGD procedure is consistent

Definition 1.

If $\lim _{t \rightarrow \infty} \theta^{t}=\theta^{*}$ in probability, irrespective of any arbitrary initial value θ^{0}, we call the procedure consistent. Here, convergence in probability means that for any $\varepsilon>0$

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(\left|\theta^{t}-\theta^{*}\right|>\varepsilon\right)=0
$$

- Do this in three steps (with some sub-steps on the way)

1. Prove that L2 convergence gives consistency
2. Prove that the sequence converge
3. Prove that we converge to the true parameter

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Step 1 L2 convergence gives consistency

Lemma 1.

Define

$$
b_{t}=E\left[\left\|\theta^{t}-\theta^{*}\right\|^{2}\right] .
$$

If $\lim _{t \rightarrow \infty} b_{t}=0$, then $\left\{\theta^{t}\right\}$ is consistent.

- $\left\{\theta^{t}\right\}$ is stochastic and multidimensional
- $\left\{b_{t}\right\}$ is deterministic and one-dimensional
- Easier to prove convergence with respect to $\left\{b_{t}\right\}$

Defining $p_{t}(\cdot)$ to be the density of θ^{t}, we have that

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\theta^{t}-\theta^{*}\right|>\varepsilon\right) & =\int_{z} I\left[\left(z-\theta^{*}\right)^{2}>\varepsilon^{2}\right] p_{t}(z) d z \\
& \leq \int_{z} \frac{\left(z-\theta^{*}\right)^{2}}{\varepsilon^{2}} p_{t}(z) d z \\
& =\frac{1}{\varepsilon^{2}} \int_{z}\left(z-\theta^{*}\right)^{2} p_{t}(z) d z=\frac{1}{\varepsilon^{2}} b_{t} \rightarrow 0
\end{aligned}
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Assumptions

- Requirements on the sequence $\left\{\alpha_{t}\right\}$:

$$
\begin{array}{r}
\alpha_{t}>0 \\
\sum_{t=2}^{\infty} \frac{\alpha_{t}}{\alpha_{1}+\cdots+\alpha_{t-1}}=\infty \\
\sum_{t=1}^{\infty} \alpha_{t}^{2}<\infty \tag{A-3}
\end{array}
$$

Note that (A-2) implies $\sum_{t=1}^{\infty} \alpha_{t}=\infty$

- Requirements on the function $g(x)$ combined with its estimate:

$$
\begin{array}{|l|l}
\hline \begin{array}{l}
g(x) \text { has same } \\
\text { sign as }\left(x-\theta^{*}\right)
\end{array} & \exists \delta \geq 0 \text { such that } g(x) \leq-\delta \text { for } x<\theta^{*} \text { and } g(x) \geq \delta \text { for } x>\theta^{*} \text {. } \\
\hline \tag{A-5}
\end{array}
$$

The constraint $|Z(\theta ; \phi)|<C$ is included to simplify the proof. More general results are available.

Det matematisk-naturvitenskapelige fakultet

Step 2 Prove that the sequence converge

Theorem 1.

Assume (A-1), (A-3), (A-4) and (A-5). Then the sequence

$$
\begin{equation*}
\theta^{t+1}=\theta^{t}-\alpha_{t} Z\left(\theta^{t} ; \phi^{t}\right) \tag{3}
\end{equation*}
$$

will converge in probability.

- This result only gives convergence to some value, not necessarily to the optimal value.
- Convergence to the optimal value will be proved later were also (A-2) will be assumed.
- Simplify the notation: Denoting $Z\left(\theta^{t} ; \phi^{t}\right)$ by Z_{t}.

Recall: Z is the stochastic version of the gradient

$$
\boldsymbol{Z}\left(\theta^{t} ; \phi^{t}\right) \approx \boldsymbol{g}\left(\theta^{t}\right)
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Proof of Theorem 1

$$
\begin{aligned}
& b_{t+1}=E\left[\left(\theta^{t+1}-\theta^{*}\right)^{2}\right]=E\left[E\left[\left(\theta^{t+1}-\theta^{*}\right)^{2} \mid \theta^{t}\right]\right]=E\left[E\left[\left(\theta^{t}-\alpha_{t} Z_{t}-\theta^{*}\right)^{2} \mid \theta^{t}\right]\right] \\
&=E\left[\left(\theta^{t}-\theta^{*}\right)^{2}+\alpha_{t}^{2} E\left[Z_{t}^{2} \mid \theta^{t}\right]-2 \alpha_{t}\left(\theta^{t}-\theta^{*}\right) E\left[Z_{t} \mid \theta^{t}\right]\right] \\
&=b_{t}+\alpha_{t}^{2} E\left[Z_{t}^{2}\right]-2 \alpha_{t} E\left[\left(\theta^{t}-\theta^{*}\right) g\left(\theta^{t}\right)\right] \\
& e_{t}=E\left[Z_{t}^{2}\right] d_{t}=E\left[\left(\theta^{t}-\theta^{*}\right) g\left(\theta^{t}\right)\right], \\
& \text { we get } \\
& b_{t+1}-b_{t}=\alpha_{t}^{2} e_{t}-2 \alpha_{t} d_{t} .
\end{aligned}
$$

- By summing the equation above over t, we get

Second series has only positive terms:
Since by (A-4) : $g(x)$ has same sign as $\left(x-\theta^{*}\right), d_{t} \geq 0$
Since by (A-1): $\alpha_{t}>0$, we then have also $\alpha_{t} d_{t} \geq 0$

If we can show that both $\sum_{i=1}^{a_{8}^{2} P_{0}}$ and $\sum_{i=1}^{a_{i} d_{s}}$ are bounded, then both series converge by monotone convergence.
And thereby also b_{t} converge

Det matematisk-naturvitenskapelige fakultet

Bounding the two series

$$
b_{t+1}=b_{1}+\sum_{s=1}^{t} \alpha_{s}^{2} e_{s}-2 \sum_{s=1}^{t} \alpha_{s} d_{s}
$$

From $|Z(\theta ; \phi)| \leq C$ we have

$$
(\mathrm{A}-5): \text { Since }\left|Z_{t}\right|<C, \quad \mathrm{e}_{t}=\mathrm{E}\left\{\left|Z_{t}\right|^{2}\right\}<C^{2}
$$

$$
\sum_{t=1}^{\infty} \alpha_{t}^{2} e_{t} \leq C^{2} \sum_{t=1}^{\infty} \alpha_{t}^{2}<\infty
$$

$$
(\mathrm{A}-3): \sum \alpha_{t}^{2}<\infty
$$

$$
\begin{array}{rc}
\sum_{s=t+1}^{\infty} \alpha_{s}^{2} \mathrm{e}_{s} \geq 0 \\
\sum_{s=1}^{t} \alpha_{s} d_{s}=\frac{1}{2}\left[b_{1}+\sum_{s=1}^{t} \alpha_{s}^{2} e_{s}-b_{t+1}\right] \leq \frac{1}{2}\left[b_{1}+\sum_{s=1}^{\infty} \alpha_{s}^{2} e_{s}\right] & \begin{array}{l}
\text { Add two } \\
\text { Non-negative } \\
\text { finite numbers }
\end{array} \\
b_{t+1}=E\left[\left(\theta^{t+1}-\theta^{*}\right)^{2}\right] \geq 0 &
\end{array}
$$

Thus if we remove it we reduce the sum
Both series are bounded and therefore converge

Two main results

Theorem 2.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume further $\delta>0$ in (A-4). Then $\lim _{t \rightarrow \infty} b_{t}=0$.
$\exists \delta \geq 0$ such that $g(x) \leq-\delta$ for $x<\theta$ and $g(x) \geq \delta$ for $x>\theta$.

Theorem 3.

Assume (A-1), (A-2), (A-3) and (A-5). Assume further

$$
\begin{align*}
& g(z) \text { is nondecreasing; } \tag{9}\\
& g\left(\theta^{*}\right)=0 \tag{10}\\
& g^{\prime}\left(\theta^{*}\right)>0 . \tag{11}
\end{align*}
$$

Then $\lim _{t \rightarrow \infty} b_{t}=0$.

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Warm up to Theorems

Lemma 2.

Assume (A-1), (A-3), (A-4) and (A-5). Assume $\left\{k_{t}\right\}$ is a sequence of nonnegative constants satisfying

$$
k_{t} b_{t} \leq d_{t}, \quad \sum_{t=1}^{\infty} \alpha_{t} k_{t}=\infty
$$

Then $\lim _{t \rightarrow \infty} b_{t}=0$.
Proof:

- We have that

$$
\begin{equation*}
\sum_{t=1}^{\infty} \alpha_{t} k_{t} b_{t} \leq \sum_{t=1}^{\infty} \alpha_{t} d_{t}<\infty \tag{6}
\end{equation*}
$$

from the proof of the previous Theorem.

- From the second part of (5) there must be an infinite number of b_{t} 's for which $b_{t}<\epsilon$ for any value of ϵ.
- Since we have already shown that $\lim _{t \rightarrow \infty} b_{t}$ exists, this shows that the limit has to be zero.

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Warm up to Theorems cont...

Lemma 3.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume for some constant $\delta>0$ that

$$
\begin{equation*}
\inf _{z \in\left[\theta^{*}-A_{t}, \theta^{*}+A_{t}\right]}\left[\frac{g(z)}{z-\theta^{*}}\right] \geq \frac{\delta}{A_{t}} \text { for } t>N \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{t}=\left|\theta^{1}-\theta^{*}\right|+C\left(\alpha_{1}+\cdots \cdot+\alpha_{t-1}\right) . \tag{8}
\end{equation*}
$$

Then $\lim _{t \rightarrow \infty} b_{t}=0$.

- We have that $\theta^{t}=\theta^{1}-\sum_{s=1}^{t-1} \alpha_{s} Z_{s}$ so that

$$
\begin{aligned}
\left|\theta^{t}-\theta^{*}\right| & =\left|\theta^{1}-\theta^{*}-\sum_{s=1}^{t-1} \alpha_{s} Z_{s}\right| \\
& \leq\left|\theta^{1}-\theta^{*}\right|+\sum_{s=1}^{t-1} \alpha_{s}\left|Z_{s}\right| \leq\left|\theta^{1}-\theta^{*}\right|+\sum_{s=1}^{t-1} \alpha_{s} C=A_{t}
\end{aligned}
$$

where the second inequality is with probability 1 .

- Define

$$
k_{t}=\inf _{x \in\left[\theta^{*}-A_{n}, \theta^{*}+A_{n}\right]}\left[\frac{g(x)}{x-\theta^{*}}\right] \geq 0 \quad \text { from (A-4) }
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Proof $k_{t} b_{t} \leq d_{t}$

$$
\begin{gathered}
k_{t}=\inf _{x \in\left[\theta^{*}-A_{n}, \theta^{*}+A_{n}\right]}\left[\frac{g(x)}{x-\theta^{*}}\right] \\
A_{t}=\left|\theta^{1}-\theta^{*}\right|+C\left(\alpha_{1}+\cdots+\alpha_{t-1}\right)
\end{gathered}
$$

- Define $p_{t}(\cdot)$ to be the density for θ^{t} :

$k_{t} b_{t}=k_{t} E\left[\left(\theta^{t}-\theta^{*}\right)^{2}\right]=\int_{z} k_{t}\left(z-\theta^{*}\right)^{2} p_{t}(z) d z$	
	$=\int_{\left[z-\theta^{*} \mid<A_{t}\right.} k_{t}(z-\theta)^{2} p_{t}(z) d z \leq \int_{\left\|z-\theta^{*}\right\|<A_{t}} \frac{g(z)}{z-\theta^{*}}\left(z-\theta^{*}\right)^{2} p_{t}(z) d z$
supported on this interval	$=\int_{\left\|z-\theta^{*}\right\| \leq A_{t}} g(z)\left(z-\theta^{*}\right) p_{t}(z) d z=E\left[g\left(\theta^{t}\right)\left(\theta^{t}-\theta^{*}\right)\right]=d_{t}$

Det matematisk-naturvitenskapelige fakultet

Proof $\sum_{t=1}^{\infty} \alpha_{t} k_{t}=\infty$

$$
A_{t}=\left|\theta^{1}-\theta^{*}\right|+C\left(\alpha_{1}+\cdots+\alpha_{t-1}\right)
$$

- By (A-2), $\sum_{t=1}^{\infty} \alpha_{t}=\infty$ which implies that for t larger than some T

$$
2 C\left(\alpha_{1}+\cdots+\alpha_{t-1}\right)=A_{t}+C\left(\alpha_{1}+\cdots+\alpha_{t-1}\right)-\left|\theta^{1}-\theta^{*}\right| \geq A_{t} .
$$

This results in that

$$
\begin{aligned}
\sum_{t=1}^{\infty} \alpha_{t} k_{t} & \geq \sum_{t=\min \{N, T\}}^{\infty} \alpha_{t} k_{t} \geq \sum_{t=\min \{N, T\}}^{\infty} \frac{\alpha_{t} \delta}{A_{t}} \\
& \geq \sum_{t=\min \{N, T\}}^{\infty} \frac{\alpha_{t} \delta}{2 C\left(\alpha_{1}+\cdots+\alpha_{t-1}\right)}=\infty
\end{aligned}
$$

showing the second requirement in (5).

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Theorem 2

Theorem 2.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume further $\delta>0$ in (A-4). Then $\lim _{t \rightarrow \infty} b_{t}=0$.

Proof:
We have for any $z \in\left[\theta-A_{t}, \theta+A_{t}\right]$

$$
\frac{g(z)}{z-\theta} \geq \frac{\delta}{|z-\theta|} \geq \frac{\delta}{A_{t}}
$$

```
Here
< \delta» in (A-4)
can be used directly as « \(\delta\) » in Lemma 3
```

implying that (7) is fulfilled which by Lemma 3 imply the result.

$$
\begin{align*}
& \alpha_{t}>0 \tag{A-1}\\
& \sum_{t=1}^{\infty} \frac{\alpha_{t}}{\alpha_{1}+\cdots+\alpha_{t-1}}=\infty \tag{A-2}\\
& \sum_{t=1}^{\infty} \alpha_{t}^{2}<\infty \tag{A-3}\\
& \exists \delta \geq 0 \text { such that } g(x) \leq-\delta \text { for } x<\theta \text { and } g(x) \geq \delta \text { for } x>\theta . \tag{A-4}\\
& E[Z(\theta ; \phi)]=g(\theta) \text { and } \operatorname{Pr}(|Z(\theta ; \phi)|<C)=1 \tag{A-5}
\end{align*}
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Theorem 3

Theorem 3.

Assume (A-1), (A-2), (A-3) and (A-5). Assume further

$$
\begin{align*}
& g(z) \text { is nondecreasing; } \tag{9}\\
& g\left(\theta^{*}\right)=0 \tag{10}\\
& g^{\prime}\left(\theta^{*}\right)>0 \tag{11}
\end{align*}
$$

Then $\lim _{t \rightarrow \infty} b_{t}=0$.

- Need to be clever when finding « δ » of Lemma 3

$$
\begin{align*}
& \alpha_{t}>0 \tag{A-1}\\
& \sum_{t=1}^{\infty} \frac{\alpha_{t}}{\alpha_{1}+\cdots+\alpha_{t-1}}=\infty \\
& \sum_{t=1}^{\infty} \alpha_{t}^{2}<\infty \\
& \exists \delta \geq 0 \text { such that } g(x) \leq-\delta \text { for } x<\theta \text { and } g(x) \geq \delta \text { for } x>\theta . \\
& E[Z(\theta ; \phi)]=g(\theta) \text { and } \operatorname{Pr}(|Z(\theta ; \phi)|<C)=1 \tag{A-5}
\end{align*}
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Proof of Theorem 3

- $g^{\prime}\left(\theta^{*}\right)=\lim _{x \rightarrow \theta^{*}} \frac{g(x)-g\left(\theta^{*}\right)}{x-\theta^{*}}$ imply

$$
\frac{g(x)}{x-\theta^{*}}=g^{\prime}\left(\theta^{*}\right)+\varepsilon\left(x-\theta^{*}\right), \quad \text { with } \lim _{t \rightarrow 0} \varepsilon(t)=0
$$

giving

$$
\varepsilon\left(x-\theta^{*}\right)=\frac{g(x)}{\left(x-\theta^{*}\right)}-g^{\prime}\left(\theta^{*}\right) \geq-\frac{1}{2} g^{\prime}\left(\theta^{*}\right)
$$

for $\left|x-\theta^{*}\right|<\delta$ and δ small enough. Thereby

$$
\frac{g(x)}{x-\theta^{*}} \geq \frac{1}{2} g^{\prime}\left(\theta^{*}\right), \quad \text { for }\left|x-\theta^{*}\right| \leq \delta
$$

- For $\theta^{*}+\delta \leq x \leq \theta^{*}+A_{t}$, since $g(z)$ is nondecreasing

$$
\frac{g(x)}{x-\theta^{*}} \geq \frac{g(x+\delta)}{A_{t}} \geq \frac{\delta g^{\prime}\left(\theta^{*}\right)}{2 A_{t}}
$$

while for $\theta^{*}-A_{t} \leq x \leq \theta^{*}-\delta$

$$
\frac{g(x)}{x-\theta^{*}}=\frac{-g(x)}{\theta^{*}-x} \geq \frac{-g(x-\delta)}{A_{t}} \geq \frac{\delta g^{\prime}\left(\theta^{*}\right)}{2 A_{t}}
$$

- Assuming (without loss of generality) $\delta / A_{t} \leq 1$ gives

$$
\frac{g(x)}{x-\theta^{*}} \geq \frac{\delta g^{\prime}\left(\theta^{*}\right)}{2 A_{t}} \quad \text { for } 0<\left|x-\theta^{*}\right| \leq A_{t} \Rightarrow \text { (7) }
$$

we can choose a δ so small that the inequality is fulfilled for all values closer to θ^{*}

$$
A_{t}=\left|\theta^{1}-\theta^{*}\right|+C\left(\alpha_{1}+\cdots+\alpha_{t-1}\right)
$$

Here

« δ » in Lemma 3
Is: $\frac{\delta g^{\prime}\left(\theta^{*}\right)}{2}$
where « δ » is selected above

