

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 SGD

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Det matematisk-naturvitenskapelige fakultet

Stochastic gradient decent

- Existed for many years (Robbins and Monro, 1951, reprinted 1985)
- Received renewed attention due to its importance in fitting deep neural networks.
- A thourough discussion of the algorithm is given in Bottou et al. (2018) while a broader discussion on stochastic optimization methods in general is given in Spall (2005).
- Aim: <u>minimize</u> some $F(\theta)$ with respect to θ .
- Empirical risk:

$$F(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) + J(\theta).$$

with many possible options for $f_i(\theta)$, e.g.

$$f_i(heta) = egin{cases} (\hat{y}_i - y_i)^2 & ext{Least squares}; \ I(\hat{y}_i
eq y_i) & ext{Classification error}; \ -\log f(y_i; heta) & ext{log-likelihood}. \end{cases}$$

• Alternative: Expected risk

 $F(\theta) = E[f(\theta; \epsilon)], \quad \epsilon$ is some random vector

Det matematisk-naturvitenskapelige fakultet

Main Idea

• $F(\cdot)$ is nice and smooth, a necessary requirement is

$$\boldsymbol{g}(\boldsymbol{\theta}^*) = \frac{\partial}{\partial \boldsymbol{\theta}} \boldsymbol{F}(\boldsymbol{\theta}) |_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} = \boldsymbol{0}$$
(1)

• Ordinary gradient descent methods:

 $\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^{t} - \boldsymbol{M}_{t}^{-1} \boldsymbol{g}(\boldsymbol{\theta}^{t}), \quad \boldsymbol{M}_{t} \text{ is some positive definite matrix}$

- Main problem: gradient might be difficult to compute.
- The stochastic gradient algorithm replaces the gradient by an estimate instead:

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^{t} - \alpha_{t} \boldsymbol{M}_{t}^{-1} \boldsymbol{Z}(\boldsymbol{\theta}^{t}; \boldsymbol{\phi}^{t}), \quad \boldsymbol{Z}(\boldsymbol{\theta}^{t}; \boldsymbol{\phi}_{\boldsymbol{k}}^{t}) \approx \boldsymbol{g}(\boldsymbol{\theta}^{t})$$
(2)
«some stochastic element»

• A class of possibilities are given by

$$\boldsymbol{Z}(\boldsymbol{\theta}^{t};\boldsymbol{\phi}^{t}) = \frac{1}{n_{t}} \sum_{i \in \mathcal{S}_{t}} \nabla f_{i}(\boldsymbol{\theta}^{t}), \quad \mathcal{S}_{t} \subset \{1, ..., n\}, n_{t} = |\mathcal{S}_{t}|$$

$$\phi^t = \mathcal{S}_t$$
"

• Algorithm:

1: **for** *t* = 1, 2, ... **do**

- 2: Simulate the stochastic gradient $Z(\theta^t; \phi^t)$;
- 3: Choose a stepsize α^t ;
- 4: Update the new value by $\boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t \alpha_t \boldsymbol{M}_t^{-1} \boldsymbol{Z}(\boldsymbol{\theta}^t; \boldsymbol{\phi}^t)$.
- 5: end for

Det matematisk-naturvitenskapelige fakultet

Example

• Logistic regression with *n* large:

$$Y_i \sim \text{Binomial}(1, p(x_i)), \quad i = 1, ..., n$$
$$p(x) = \frac{\exp(\theta_0 + \theta_1 x)}{1 + \exp(\theta_0 + \theta_1 x)}$$

• Want to minimize

$$egin{aligned} F(m{ heta}) &= -\sum_{i=1}^n [y_i \log(p_i) + (1-y_i) \log(1-p_i)] \ &= -\sum_{i=1}^n [y_i (heta_0 + heta_1 x_i) - \log(1 + \exp(heta_0 + heta_1 x_i))]. \end{aligned}$$

• Defining

$$f_i(\boldsymbol{\theta}) = -y_i(\theta_0 + \theta_1 x_i) + \log(1 + \exp(\theta_0 + \theta_1 x_i))$$

we have

$$\nabla f_i(\boldsymbol{\theta}) = -\begin{pmatrix} y_i - \frac{\exp(\theta_0 + \theta_1 x_i)}{1 + \exp(\theta_0 + \theta_1 x_i)} \\ [y_i - \frac{\exp(\theta_0 + \theta_1 x_i)}{1 + \exp(\theta_0 + \theta_1 x_i)}] X_i \end{pmatrix}$$

#Initialization b = c(0,1) #Initial value N.it = 1000 #Number of iterations k = 10 #Number of samples for estimating gradient #SG-loop for(it in 1:N.it) { i = sample(1:n,k) alpha = 10/it p.i = exp(b[1]+b[2]*x[i])/(1+exp(b[1]+b[2]*x[i])) g = colMeans(cbind(y[i]-p.i,(y[i]-p.i)*x[i])) b = b + alpha*g }

Det matematisk-naturvitenskapelige fakultet

Convergence in example

Time

Det matematisk-naturvitenskapelige fakultet

Convergence of SGD

• Want to show that the SGD procedure is consistent

Definition 1.

If $\lim_{t\to\infty} \theta^t = \theta^*$ in probability, irrespective of any arbitrary initial value θ^0 , we call the procedure consistent. Here, convergence in probability means that for any $\varepsilon > 0$

 $\lim_{t\to\infty} \Pr(|\boldsymbol{\theta}^t - \boldsymbol{\theta}^*| > \varepsilon) = 0.$

- Do this in three steps (with some sub-steps on the way)
 - 1. Prove that L2 convergence gives consistency
 - 2. Prove that the sequence converge
 - 3. Prove that we converge to the true parameter

Det matematisk-naturvitenskapelige fakultet

Step 1 L2 convergence gives consistency

Lemma 1.

Define

$$b_t = E[||\theta^t - \theta^*||^2].$$

If $\lim_{t\to\infty} b_t = 0$, then $\{\theta^t\}$ is consistent.

- $\{\theta^t\}$ is stochastic and multidimensional
- $\{b_t\}$ is deterministic and one-dimensional
- Easier to prove convergence with respect to $\{b_t\}$

Defining $p_t(\cdot)$ to be the density of θ^t , we have that

$$\Pr(|\theta^{t} - \theta^{*}| > \varepsilon) = \int_{z} I[(z - \theta^{*})^{2} > \varepsilon^{2}]p_{t}(z)dz$$
$$\leq \int_{z} \frac{(z - \theta^{*})^{2}}{\varepsilon^{2}}p_{t}(z)dz$$
$$= \frac{1}{\varepsilon^{2}} \int_{z} (z - \theta^{*})^{2}p_{t}(z)dz = \frac{1}{\varepsilon^{2}}b_{t} \to 0$$

Det matematisk-naturvitenskapelige fakultet

Assumptions

• Requirements on the sequence
$$\{\alpha_t\}$$
:

$$\alpha_t > 0$$
 (A-1)

$$\sum_{t=2}^{\infty} \frac{\alpha_t}{\alpha_1 + \dots + \alpha_{t-1}} = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$
(A-2)
(A-3)

Note that (A-2) implies $\sum_{t=1}^{\infty} \alpha_t = \infty$

• Requirements on the function g(x) combined with its estimate:

The constraint $|Z(\theta; \phi)| < C$ is included to simplify the proof. More general results are available.

Det matematisk-naturvitenskapelige fakultet

Step 2 Prove that the sequence converge

Theorem 1.

Assume (A-1), (A-3), (A-4) and (A-5). Then the sequence

$$\theta^{t+1} = \theta^t - \alpha_t Z(\theta^t; \phi^t)$$

(3)

will converge in probability.

- This result only gives convergence to some value, not necessarily to the optimal value.
- Convergence to the optimal value will be proved later were also (A-2) will be assumed.
- Simplify the notation: Denoting $Z(\theta^t; \phi^t)$ by Z_t .

Recall: *Z* is the stochastic version of the gradient $Z(\theta^t; \phi^t) \approx g(\theta^t)$

Det matematisk-naturvitenskapelige fakultet

Proof of Theorem 1

$$b_{t+1} = E[(\theta^{t+1} - \theta^*)^2] = E[E[(\theta^{t+1} - \theta^*)^2 | \theta^t]] = E[E[(\theta^t - \alpha_t Z_t - \theta^*)^2 | \theta^t]]$$

= $E[(\theta^t - \theta^*)^2 + \alpha_t^2 E[Z_t^2 | \theta^t] - 2\alpha_t (\theta^t - \theta^*) E[Z_t | \theta^t]]$
= $b_t + \alpha_t^2 E[Z_t^2] - 2\alpha_t E[(\theta^t - \theta^*) g(\theta^t)]$

$$e_t = E[Z_t^2] \quad d_t = E[(\theta^t - \theta^*)g(\theta^t)],$$

we get

$$b_{t+1} - b_t = \alpha_t^2 e_t - 2\alpha_t d_t$$

• By summing the equation above over *t*, we get

If we can show that both $\sum_{s=1}^{t} \alpha_s^2 e_s$ and $\sum_{s=1}^{t} \alpha_s d_s$ are bounded, then both series converge by monotone convergence. And thereby also b_t converge

Det matematisk-naturvitenskapelige fakultet

Bounding the two series

$$b_{t+1} = b_1 + \sum_{s=1}^t \alpha_s^2 e_s - 2 \sum_{s=1}^t \alpha_s d_s.$$

From $|Z(\theta; \phi)| \leq C$ we have

(A-5): Since $|Z_t| < C$, $e_t = E\{|Z_t|^2\} < C^2$ (A-3): $\sum \alpha_t^2 < \infty$

0

$$\sum_{s=1}^{t} \alpha_s d_s = \frac{1}{2} \left[b_1 + \sum_{s=1}^{t} \alpha_s^2 e_s - b_{t+1} \right] \leq \frac{1}{2} \left[b_1 + \sum_{s=1}^{\infty} \alpha_s^2 e_s \right]$$
$$b_{t+1} = E[(\theta^{t+1} - \theta^*)^2] \geq$$

Add two Non-negative finite numbers

Thus if we remove it we reduce the sum

Both series are bounded and therefore converge

Det matematisk-naturvitenskapelige fakultet

Two main results

Theorem 2.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume further $\delta > 0$ in (A-4). Then $\lim_{t\to\infty} b_t = 0$.

 $\exists \delta \geq 0 \text{ such that } g(x) \leq -\delta \text{ for } x < \theta \text{ and } g(x) \geq \delta \text{ for } x > \theta.$ (A-4)

Theorem 3.

Assume (A-1), (A-2), (A-3) and (A-5). Assume further

 $egin{aligned} g(z) ext{ is nondecreasing;} \ g(heta^*) &= 0; \ g'(heta^*) &> 0. \end{aligned}$

(10) (11)

(9)

Det matematisk-naturvitenskapelige fakultet

Warm up to Theorems

Lemma 2.

Assume (A-1), (A-3), (A-4) and (A-5). Assume $\{k_t\}$ is a sequence of nonnegative constants satisfying So if we can

find such a

kt-sequence

we are done

(5)

(6)

$$k_t b_t \leq d_t, \quad \sum_{t=1}^{\infty} \alpha_t k_t = \infty$$

Then $\lim_{t\to\infty} b_t = 0$.

Proof:

We have that

$$\sum_{t=1}^{\infty} \alpha_t k_t b_t \leq \sum_{t=1}^{\infty} \alpha_t d_t < \infty$$

 $\left| \sum_{i=1}^{t} \alpha_{e} d_{e} = \frac{1}{\pi} \left[b_{1} + \sum_{i=1}^{t} \alpha_{e}^{2} \theta_{e} - b_{t+1} \right] < \frac{1}{\pi} \left[b_{1} + \sum_{i=1}^{\infty} \alpha_{e}^{2} \theta_{e} \right]$

from the proof of the previous Theorem.

- From the second part of (5) there must be an infinite number of b_t 's for which $b_t < \epsilon$ for any value of ϵ .
- Since we have already shown that $\lim_{t\to\infty} b_t$ exists, this shows that the limit has to be zero.

Det matematisk-naturvitenskapelige fakultet

Warm up to Theorems cont...

Lemma 3.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume for some constant $\delta > 0$ that

$$\inf_{z \in [\theta^* - A_t, \theta^* + A_t]} \left[\frac{g(z)}{z - \theta^*} \right] \ge \frac{\delta}{A_t} \text{ for } t > N$$

where

$$oldsymbol{A}_t = | heta^1 - heta^*| + oldsymbol{C}(lpha_1 + \cdot ert \cdot + lpha_{t-1}).$$

Then $\lim_{t\to\infty} b_t = 0$.

• We have that $\theta^t = \theta^1 - \sum_{s=1}^{t-1} \alpha_s Z_s$ so that

$$\begin{aligned} |\theta^{t} - \theta^{*}| &= |\theta^{1} - \theta^{*} - \sum_{s=1}^{t-1} \alpha_{s} Z_{s}| \\ &\leq |\theta^{1} - \theta^{*}| + \sum_{s=1}^{t-1} \alpha_{s} |Z_{s}| \leq |\theta^{1} - \theta^{*}| + \sum_{s=1}^{t-1} \alpha_{s} C = A \end{aligned}$$

where the second inequality is with probability 1.

Define

$$k_t = \inf_{x \in [\theta^* - A_n, \theta^* + A_n]} \left[\frac{g(x)}{x - \theta^*} \right] \ge 0 \quad \text{from (A-4)}$$

Det matematisk-naturvitenskapelige fakultet

Proof
$$k_t b_t \le d_t$$

$$egin{aligned} k_t &= \inf_{x \in [heta^* - A_n, heta^* + A_n]} \left[rac{g(x)}{x - heta^*}
ight] \ egin{aligned} A_t &= | heta^1 - heta^*| + C(lpha_1 + \cdots + lpha_{t-1}) \end{aligned}$$

• Define
$$p_t(\cdot)$$
 to be the density for θ^t :

$$k_{t}b_{t} = k_{t}E[(\theta^{t} - \theta^{*})^{2}] = \int_{z} k_{t}(z - \theta^{*})^{2}p_{t}(z)dz$$

$$= \int_{|z-\theta^{*}| \le A_{t}} k_{t}(z - \theta)^{2}p_{t}(z)dz \le \int_{|z-\theta^{*}| \le A_{t}} \frac{g(z)}{z - \theta^{*}}(z - \theta^{*})^{2}p_{t}(z)dz$$

$$= \int_{|z-\theta^{*}| \le A_{t}} g(z)(z - \theta^{*})p_{t}(z)dz = E[g(\theta^{t})(\theta^{t} - \theta^{*})] = d_{t}$$

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Proof
$$\sum_{t=1}^{\infty} \alpha_t k_t = \infty$$
 $A_t = |\theta^1 - \theta^*| + C(\alpha_1 + \cdots + \alpha_{t-1})$

• By (A-2), $\sum_{t=1}^{\infty} \alpha_t = \infty$ which implies that for *t* larger than some *T*

$$2C(\alpha_1 + \cdots + \alpha_{t-1}) = A_t + C(\alpha_1 + \cdots + \alpha_{t-1}) - |\theta^1 - \theta^*| \geq A_t.$$

showing the second requirement in (5).

Det matematisk-naturvitenskapelige fakultet

Theorem 2

Theorem 2.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume further $\delta > 0$ in (A-4). Then $\lim_{t\to\infty} b_t = 0$.

Proof:

We have for any $z \in [\theta - A_t, \theta + A_t]$

$$\frac{g(z)}{z-\theta} \geq \frac{\delta}{|z-\theta|} \geq \frac{\delta}{A_t}$$

Here « δ » in (A-4) can be used directly as « δ » in Lemma 3

implying that (7) is fulfilled which by Lemma 3 imply the result.

$$\begin{aligned} \alpha_t &> 0 & (A-1) \\ &\sum_{t=1}^{\infty} \frac{\alpha_t}{\alpha_1 + \dots + \alpha_{t-1}} = \infty & (A-2) \\ &\sum_{t=1}^{\infty} \alpha_t^2 < \infty & (A-3) \\ &\exists \delta \geq 0 \text{ such that } g(x) \leq -\delta \text{ for } x < \theta \text{ and } g(x) \geq \delta \text{ for } x > \theta. & (A-4) \\ &E[Z(\theta; \phi)] = g(\theta) \text{ and } \Pr(|Z(\theta; \phi)| < C) = 1 & (A-5) \end{aligned}$$

Det matematisk-naturvitenskapelige fakultet

Theorem 3

Theorem 3.

Assume (A-1), (A-2), (A-3) and (A-5). Assume further

g(z) is nondecreasing;(9) $g(\theta^*) = 0;$ (10) $g'(\theta^*) > 0.$ (11)

Then $\lim_{t\to\infty} b_t = 0$.

• Need to be clever when finding δ of Lemma 3

 $\begin{aligned} \alpha_t &> 0 & (A-1) \\ &\sum_{t=1}^{\infty} \frac{\alpha_t}{\alpha_1 + \dots + \alpha_{t-1}} = \infty & (A-2) \\ &\sum_{t=1}^{\infty} \alpha_t^2 < \infty & (A-3) \\ &\exists \delta \geq 0 \text{ such that } g(x) \leq -\delta \text{ for } x < \theta \text{ and } g(x) \geq \delta \text{ for } x > \theta. & (A-4) \\ &E[Z(\theta; \phi)] = g(\theta) \text{ and } \Pr(|Z(\theta; \phi)| < C) = 1 & (A-5) \end{aligned}$

Det matematisk-naturvitenskapelige fakultet

Proof of Theorem 3

•
$$g'(\theta^*) = \lim_{x \to \theta^*} \frac{g(x) - g(\theta^*)}{x - \theta^*}$$
 imply

$$\frac{g(x)}{x- heta^*} = g'(heta^*) + arepsilon(x- heta^*), \quad ext{with } \lim_{t o 0} arepsilon(t) = 0$$

giving

$$arepsilon(x- heta^*)=rac{g(x)}{(x- heta^*)}-g'(heta^*)\geq -rac{1}{2}g'(heta^*)$$

for $|x - \theta^*| < \delta$ and δ small enough. Thereby

$$rac{g(x)}{x- heta^*} \geq rac{1}{2}g'(heta^*), \quad ext{for } |x- heta^*| \leq \delta$$

• For $\theta^* + \delta \le x \le \theta^* + A_t$, since g(z) is nondecreasing

$$\frac{g(x)}{x-\theta^*} \geq \frac{g(x+\delta)}{A_t} \geq \frac{\delta g'(\theta^*)}{2A_t}$$

while for $\theta^* - A_t \leq x \leq \theta^* - \delta$

$$\frac{g(x)}{x-\theta^*} = \frac{-g(x)}{\theta^*-x} \ge \frac{-g(x-\delta)}{A_t} \ge \frac{\delta g'(\theta^*)}{2A_t}$$

• Assuming (without loss of generality) $\delta/A_t \leq 1$ gives

$$\frac{g(x)}{x - \theta^*} \ge \frac{\delta g'(\theta^*)}{2A_t} \quad \text{for } 0 < |x - \theta^*| \le A_t \Rightarrow (7)$$

Since $g'(\theta^*) > 0$, we can choose a δ so small that the inequality is fulfilled for all values closer to θ^*

 $A_t = |\theta^1 - \theta^*| + C(\alpha_1 + \cdots + \alpha_{t-1})$

Here « δ » in Lemma 3 Is: $\frac{\delta g'(\theta^*)}{2}$ where « δ » is selected above

20