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SGD
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Last time

• EM in Exponential family

• Variance estimate in EM

• Bootstrap

• EM for hidden Markov model

• Stochastic gradient decent

– What it is 

– Minibatch is one type of randomness

– Proof of convergence Part 1
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Question
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When geting the max of Q, these expectations are given

The current estimate of parameter is used.

• When finding the derivative of the Q_lagran with respect to beta (for eksample), 

it seems that t_i(theta^s) is treated as a constant, but doesn’t this contain beta? 

ISn’t beta part of the normalising sum? Or is beta^(s) only used in the 

expectation?
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STK 4051 Computational statistics, spring 2021

we get: 𝜙 = 𝑁



Info 

• Many good videos on course topics online

– Some gives a an overview

– Some gives details 

– Be critical, is what you get what you need?

• Explanation and example of the EM algorithm for the for 

the mixture gaussian case  (thanks to Susie Jentoft)
– https://www.youtube.com/watch?v=REypj2sy_5U

– https://www.youtube.com/watch?v=iQoXFmbXRJA

• Next week (After exercise 15.15-15.35) your co-student 

Susie Jentoft will give a presentation of R-Markdown. 

Usefull for documentation in R [will be recorded].
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https://www.youtube.com/watch?v=REypj2sy_5U
https://www.youtube.com/watch?v=iQoXFmbXRJA


SGD convergence; Assumptions
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x

𝑔(𝑥) has same 

sign as (𝑥 − 𝜃∗)

𝑥 < 𝜃∗ 𝑥 > 𝜃∗

𝑔(𝑥)𝑓(𝑥)

𝜃∗



The SGD procedure is consistent

• Three steps (with some sub-steps on the way)
1. Prove that L2 convergence gives consistency

2. Prove that the sequence converge

3. Prove that  we converge to the true parameter

Needed to find  𝑘𝑡 such that:

Proposed value for 𝑘𝑡 is:

Where 𝐴𝑛 is an upper limit on distance  between 𝜃𝑡 and 𝜃∗

1. 𝑘𝑡 is constructed such that 𝑘𝑡𝑏𝑡 < 𝑑𝑡, Need to show the last sum is infinite

2. Separate into two cases 
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𝜀−𝜀



Case 1   
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𝑥 < 𝜃∗ 𝑥 > 𝜃∗

𝑓(𝑥)
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(A4) with a strictly positive 𝛿

𝛿 < 𝑔 𝑥

1

|𝑥 − 𝜃∗|
<

1

𝐴𝑡
=

𝛿

2𝐶
෍

𝑡=max{𝑁,𝑇}

𝛼𝑡
𝛼1 +⋯+ 𝛼𝑡

= ∞

max max

max
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Here 

«𝛿» in (A-4) 

can be used directly as 

«𝛿» in Lemma 3
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𝑥 < 𝜃∗ 𝑥 > 𝜃∗

𝑔(𝑥)

𝑓(𝑥)

Need to be clever to come up 

with a “new  𝛿”  to this Lemma.  

We do not have a lover limit on 

g(z) directly.

(A4) with a 𝛿 = 0



Proof of Theorem 3

12

Since

we can choose a 𝛿 so 

small that the inequality is 

fulfilled for all values 

closer to 𝜃∗

Here 

«𝛿» in Lemma 3

Is: 
𝛿𝑔′ 𝜃∗

2

where «𝛿»  is selected above 

for 𝑥 − 𝜃∗ < 𝛿



Stochastic gradients and neural nets
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𝑓 𝑋 = ෍

𝑚=1

𝑀𝑁𝑁

𝛽𝑚𝜎 𝛼𝑚
𝑇 𝑋 + 𝛼0

𝜷

𝜶

One hidden layer



Stochastic gradients and neural nets
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Questions?
• What is the convergence result for SGD?

– If the function is sufficiently regular (A-4) & the stochastic gradient is 

unbiased and not too large and (A-5).  SGD will converge to the 

optimum by choosing the learning rate according to (A-1), (A-2)& (A-3)

• Have we proven convergence of SGD for Neural Nets?

– No, we haven't proven that the NN- function is well behaved

• It is common to use fixed step size  when applying SGD for Neural 

Nets, what might be the reason for this?

– It converges faster to something close to the optimum. 

– Do you need to get all the way to 𝜃∗ to have a good enough result?

– Half the stepsize if the convergence stall…
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Constant learning rate
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Gets you close faster, 

but «never settles»



Fitting neural networks

𝑅 𝜃 = 𝐿 𝑌, መ𝑓 𝑋

=෍

𝑖=1

𝑁

෍

𝑘=1

𝐾

𝑦𝑖𝑘 − መ𝑓𝑘 𝑥𝑖
2

=෍

𝑖=1

𝑁

𝑅𝑖(𝜃)

𝑅𝑖(𝜃) = ෍

𝑘=1

𝐾

𝑦𝑖𝑘 − መ𝑓𝑘 𝑥𝑖
2
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𝐾

𝑀

𝑝
𝜃: Statistical slang for all parameters
Here:

𝛼0,𝑚, 𝛼𝑚 , # parameters: 𝑝 + 1 𝑀

𝛽0,𝑚, 𝛽𝑚 , # parameters: 𝑀 + 1 𝐾

𝜶

𝜷

𝑝 + 1 𝑀

𝐾𝑀 + 1

The “standard” approach:

• Minimize the loss

• Use steepest decent to 

solve this minimization 

problem

• The key to success is the 

efficient way of computing 

the gradient

Contribution of 

the i’th data record

Quadratic loss

K output variables



Steepest decent

• Minimize 𝑅(𝜃) wrt 𝜃, 

– Initialize: 𝜃(0)

– Iterate:

𝜃𝑗
(𝑟+1)

= 𝜃𝑗
(𝑟)

− 𝛾𝑟 อ
𝜕𝑅 𝜃

𝜕𝜃𝑗
𝜃=𝜃(𝑟)
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Learning rate

𝜕𝑅 𝜃

𝜕𝜃𝑗
= ෍

𝑖=1

𝑁
𝜕𝑅𝑖 𝜃

𝜕𝜃𝑗

𝜕𝑅𝑖 𝜃

𝜕𝜃𝑗

we compute term per data record

(easily aggregated from 

parallel computation)

𝑅 𝜃 =෍

𝑖=1

𝑁

𝑅𝑖(𝜃)



Squared error loss

𝜕𝑅𝑖 𝜃

𝜕𝛽𝑘,𝑚
= −2 𝑦𝑖,𝑘 − 𝑓𝑘 𝑥𝑖 𝑔𝑘

′ 𝛽𝑘
𝑇𝑧𝑖 𝑧𝑚,𝑖

= 𝛿𝑘,𝑖 ⋅ 𝑧𝑚,𝑖

𝜕𝑅𝑖 𝜃

𝜕𝛼𝑚,𝑙
= −෍

𝑘=1

𝐾

2 𝑦𝑖𝑘 − 𝑓𝑘 𝑥𝑖 𝑔𝑘
′ 𝛽𝑘

𝑇𝑧𝑖 𝛽𝑘𝑚 𝜎′(𝛼𝑚
𝑇 𝑥𝑖)𝑥𝑖,𝑙

= 𝑠𝑚,𝑖 ⋅ 𝑥𝑖,𝑙
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𝐻𝑒𝑟𝑒: 𝑔𝑘 𝑇 = 𝑇k

Output 

layer:

Back 

propagation 

equation
𝑠𝑚,𝑖= 𝜎′(𝛼𝑚

𝑇 𝑥𝑖)෍

𝑘=1

𝐾

𝛽𝑘𝑚𝛿𝑘,𝑖

Hidden 

layer:

𝑇𝑘 = 𝛽𝑘
𝑇𝑧𝑖



Back propagation (delta rule) 
• At top level. compute:

𝛿𝑘,𝑖 = −2 𝑦𝑖,𝑘 − 𝑓𝑘 𝑥𝑖 𝑔𝑘
′ 𝛽𝑘

𝑇𝑧𝑖 , ∀(𝑖, 𝑘)

• At hidden level, compute:

𝑠𝑚,𝑖 = 𝜎′(𝛼𝑚
𝑇 𝑥𝑖)෍

𝑘=1

𝐾

𝛽𝑘,𝑚𝛿𝑘,𝑖 , ∀(𝑖,𝑚)

• Evaluate:
𝜕𝑅𝑖 𝜃

𝜕𝛽𝑘,𝑚
= 𝛿𝑘,𝑖𝑧𝑚,𝑖 &

𝜕𝑅𝑖 𝜃

𝜕𝛼𝑚,𝑙
= 𝑠𝑚,𝑖𝑥𝑖,𝑙

• Update : 𝛾𝑟 is fixed   
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𝛽𝑘,𝑚
(𝑟+1)

= 𝛽𝑘,𝑚
(𝑟)

− 𝛾𝑟෍

𝑖=1

𝑁

ቤ
𝜕𝑅𝑖
𝜕𝛽𝑘,𝑚 𝜃=𝜃(𝑟)

𝛼𝑚,𝑙
(𝑟+1)

= 𝛼𝑚,𝑙
(𝑟)

− 𝛾𝑟෍

𝑖=1

𝑁

ቤ
𝜕𝑅𝑖
𝜕𝛼 𝑚,𝑙 𝜃=𝜃(𝑟)



Stochastic gradient decent

• Equations above updates with all data at the same time

• The form  invites to update estimate using fractions of data

– Perform a random partition of training data in to batches:{𝐵𝑗}𝑗=1
#Batches

– For all batches cycle over the data in this batch to update data

– Repeat 

• One iteration is one update of the parameter (using one batch)

• One Epoch is one scan through all data  (using all batches in the partition)
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𝛽𝑘,𝑚
(𝑟+1)

= 𝛽𝑘,𝑚
(𝑟)

− 𝛾𝑟෍

𝑖=1

𝑁

ቤ
𝜕𝑅𝑖
𝜕𝛽𝑘,𝑚 𝜃=𝜃(𝑟)

𝛼𝑚,𝑙
(𝑟+1)

= 𝛼𝑚,𝑙
(𝑟)

− 𝛾𝑟෍

𝑖=1

𝑁

ቤ
𝜕𝑅𝑖
𝜕𝛼 𝑚,𝑙 𝜃=𝜃(𝑟)

𝛽𝑘,𝑚
(𝑟+1)

= 𝛽𝑘,𝑚
(𝑟)

− 𝛾𝑟 ෍

𝑖∈B𝑗

ቤ
𝜕𝑅𝑖
𝜕𝛽𝑘,𝑚 𝜃=𝜃(𝑟)

𝛼𝑚,𝑙
(𝑟+1)

= 𝛼𝑚,𝑙
(𝑟)

− 𝛾𝑟 ෍

𝑖∈𝐵𝑗

ቤ
𝜕𝑅𝑖
𝜕𝛼 𝑚,𝑙 𝜃=𝜃(𝑟)



Online learning  (Batch size =1)

• Learning based on one data point at the time

• You might re-iterate (for several epochs) when completed or if 

you have an abundance of data just take on new data as they 

come along (hence the name)

• For convergence: 𝛾𝑟 → 0, as ∑𝛾𝑟 → ∞ and ∑𝛾𝑟
2 < ∞ , 

e.g. 𝛾𝑟 =
1

𝑟
(as shown earlier)
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𝛽𝑘,𝑚
(𝑟)

= 𝛽𝑘,𝑚
(𝑟−1)

− 𝛾𝑟 ቤ
𝜕𝑅𝑖
𝜕𝛽𝑘,𝑚 𝜃=𝜃 𝑟−1

𝛼𝑚,𝑙
(𝑟)

= 𝛼𝑚,𝑙
(𝑟−1)

− 𝛾𝑟 ቤ
𝜕𝑅𝑖
𝜕𝛼 𝑚,𝑙 𝜃=𝜃(𝑟−1)



SGD for dependent data
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ML and Kullback-Leibler divergence
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KL and Geostatistics
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Example
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log 𝑓 𝒚𝑘 𝒔𝑘 = −
𝑚

2
log 2𝜋 −

1

2
log Σ𝑘 −

1

2
𝑦𝑘 − 𝜇𝟏𝒎

𝑇Σ𝑘
−1 𝑦𝑘 − 𝜇𝟏𝒎


