

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 SGD

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Det matematisk-naturvitenskapelige fakultet

Last time

- EM in Exponential family
- Variance estimate in EM
- Bootstrap
- EM for hidden Markov model
- Stochastic gradient decent
 - What it is
 - Minibatch is one type of randomness
 - Proof of convergence Part 1

Det matematisk-naturvitenskapelige fakultet

Question

 When finding the derivative of the Q_lagran with respect to beta (for eksample), it seems that t_i(theta^s) is treated as a constant, but doesn't this contain beta? ISn't beta part of the normalising sum? Or is beta^(s) only used in the expectation?

$$l(\boldsymbol{\theta}) = n_{z,0} \log(\alpha) + \sum_{i=0}^{10} [n_{t,i} (\log(\beta) + i \log(\mu) - \mu) + n_{p,i} (\log(\gamma) + i \log(\lambda) - \lambda)]$$

Then (with $\boldsymbol{n} = (n_0, ..., n_{16})$ and using s to denote iteration number in order not to confuse with t in model)

When geting the max of Q, these expectations are given The current estimate of parameter is used.

$$E[N_{t,i}|\boldsymbol{n}, \boldsymbol{\theta}^{(s)}] = n_i \frac{\beta^{(s)}(\mu^{(s)})^i \exp(-\mu^{(s)})}{\pi_i(\boldsymbol{\theta}^{(s)})} = n_i t_i(\boldsymbol{\theta}^{(s)})$$

We similarly get

$$\begin{split} E[N_{z,0}|\boldsymbol{n},\boldsymbol{\theta}^{(s)}] = & n_0 \frac{\alpha^{(s)}}{\pi_0(\boldsymbol{\theta}^{(s)})} = n_0 z_0(\boldsymbol{\theta}^{(s)}) \\ E[N_{p,i}|\boldsymbol{n},\boldsymbol{\theta}^{(s)}] = & n_i \frac{\gamma^{(s)}(\lambda^{(s)})^i \exp(-\lambda^{(s)})}{\pi_i(\boldsymbol{\theta}^{(s)})} = n_i p_i(\boldsymbol{\theta}^{(s)}) \end{split}$$

Further, introducing the Lagrange term,

$$Q_{lagr}(\boldsymbol{\theta}|\boldsymbol{\theta}^{(s)}) = Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(s)}) + \phi(1 - \alpha - \beta - \gamma)$$

we get
$$\frac{\partial}{\partial \alpha} Q_{lagr}(\boldsymbol{\theta}|\boldsymbol{\theta}^{(s)}) = n_0 z_0(\boldsymbol{\theta}^{(s)}) \frac{1}{\alpha} - \phi$$
 so

$$\alpha^{(s+1)} = \frac{1}{\phi} n_0 z_0(\boldsymbol{\theta}^{(s)})$$

$$\frac{\partial}{\partial \gamma} Q_{lagr}(\boldsymbol{\theta} | \boldsymbol{\theta}^{(s)}) = \sum_{i=0}^{16} p_i(\boldsymbol{\theta}^{(s)}) \frac{1}{\gamma} - \phi$$
so
$$\gamma^{(s+1)} = \frac{1}{\phi} \sum_{i=0}^{16} n_i p_i(\boldsymbol{\theta}^{(s)})$$

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(s)}) = E[N_{z,0}|\boldsymbol{n}, \boldsymbol{\theta}^{(s)}] \log(\alpha) + \sum_{i=0}^{16} [E[N_{t,i}|\boldsymbol{n}, \boldsymbol{\theta}^{(s)}] (\log(\beta) + i \log(\mu) - \mu) + \sum_{i=0}^{16} E[N_{p,i}|\boldsymbol{n}, \boldsymbol{\theta}^{(s)}] (\log(\gamma) + i \log(\lambda) - \lambda)]$$

$$\frac{\partial}{\partial\beta}Q_{lagr}(\boldsymbol{\theta}|\boldsymbol{\theta}^{(s)}) = \sum_{i=0}^{16} n_i t_i(\boldsymbol{\theta}^{(s)}) \frac{1}{\beta} - \phi$$

so
$$\beta^{(s+1)} = \frac{1}{\phi} \sum_{i=0}^{16} n_i t_i(\boldsymbol{\theta}^{(s)})$$

By noting that

$$n_0 z_0(\boldsymbol{\theta}^{(s)}) + \sum_{i=0}^{16} n_i t_i(\boldsymbol{\theta}^{(s)}) + \sum_{i=0}^{16} n_i p_i(\boldsymbol{\theta}^{(s)}) = N$$

we get:
$$\phi = N$$

Det matematisk-naturvitenskapelige fakultet

Info

- · Many good videos on course topics online
 - Some gives a an overview
 - Some gives details
 - Be critical, is what you get what you need?
- Explanation and example of the EM algorithm for the for the mixture gaussian case (thanks to Susie Jentoft)
 - <u>https://www.youtube.com/watch?v=REypj2sy_5U</u>
 - <u>https://www.youtube.com/watch?v=iQoXFmbXRJA</u>
- Next week (After exercise 15.15-15.35) your co-student Susie Jentoft will give a presentation of R-Markdown. Usefull for documentation in R [will be recorded].

Det matematisk-naturvitenskapelige fakultet

SGD convergence; Assumptions

• Requirements on the sequence $\{\alpha_t\}$:

$$\alpha_t > 0$$
 (A-1)

$$\sum_{t=2}^{\infty} \frac{\alpha_t}{\alpha_1 + \dots + \alpha_{t-1}} = \infty$$

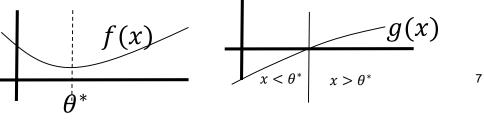
$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$
(A-2)
(A-3)

Note that (A-2) implies $\sum_{t=1}^{\infty} \alpha_t = \infty$

• Requirements on the function g(x) combined with its estimate:

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline g(x) \text{ has same} \\ \hline \text{sign as } (x - \theta^*) \end{array} \xrightarrow{\bullet} \exists \delta \ge 0 \text{ such that } g(x) \le -\delta \text{ for } x < \theta^* \text{ and } g(x) \ge \delta \text{ for } x > \theta^*. \tag{A-4} \\ \hline E[Z(\theta; \phi)] = g(\theta) \text{ and } \Pr(|Z(\theta; \phi)| < C) = 1 \end{aligned}$$

The constraint $|Z(\theta; \phi)| < C$ is included to simplify the proof. More general results are available.



The SGD procedure is consistent

- Three steps (with some sub-steps on the way)
 - 1. Prove that L2 convergence gives consistency
 - 2. Prove that the sequence converge

$$b_{t+1} = b_1 + \sum_{s=1}^t \alpha_s^2 e_s - 2 \sum_{s=1}^t \alpha_s d_s.$$
 $e_t = E[Z_t^2] \ d_t = E[(\theta^t - \theta^*)g(\theta^t)],$

3. Prove that we converge to the true parameter Needed to find k_t such that:

$$k_t b_t \leq d_t$$
, $\sum_{t=1}^{\infty} \alpha_t k_t = \infty$

Proposed value for k_t is: $k_t = \inf_{x \in [\theta^* - A_n, \theta^* + A_n]} \left[\frac{g(x)}{x - \theta^*} \right] \ge 0$ from (A-4)

Where A_n is an upper limit on distance between θ^t and θ^*

- *1.* k_t is constructed such that $k_t b_t < d_t$, Need to show the last sum is infinite
- 2. Separate into two cases

 $-\varepsilon$

Е

f(x)

 $x > \theta^*$

 $x < \theta^*$

Det matematisk-naturvitenskapelige fakultet

Case 1

(A4) with a strictly positive δ $\exists \delta > 0$ such that $g(x) \leq -\delta$ for $x < \theta^*$ and $g(x) \geq \delta$ for $x > \theta^*$.

• By (A-2), $\sum_{t=1}^{\infty} \alpha_t = \infty$ which implies that for *t* larger than some *T* $2C(\alpha_1 + \cdots + \alpha_{t-1}) = A_t + C(\alpha_1 + \cdots + \alpha_{t-1}) - |\theta^1 - \theta^*| \ge A_t.$

Det matematisk-naturvitenskapelige fakultet

Lemma 3.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume for some constant $\delta > 0$ that

$$\inf_{z \in [\theta^* - A_t, \theta^* + A_t]} \left[\frac{g(z)}{z - \theta^*} \right] \ge \frac{\delta}{A_t} \text{ for } t > N$$
(7)

where

$$A_t = |\theta^1 - \theta^*| + C(\alpha_1 + \cdot \cdot \cdot \cdot + \alpha_{t-1}).$$

Then $\lim_{t\to\infty} b_t = 0$.

Theorem 2.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume further $\delta > 0$ in (A-4). Then $\lim_{t\to\infty} b_t = 0$.

Proof:

We have for any $z \in [\theta - A_n, \theta + A_n]$

$$\frac{g(z)}{z-\theta} \geq \frac{\delta}{|z-\theta|} \geq \frac{\delta}{A_t}$$

Here « δ » in (A-4) can be used directly as « δ » in Lemma 3

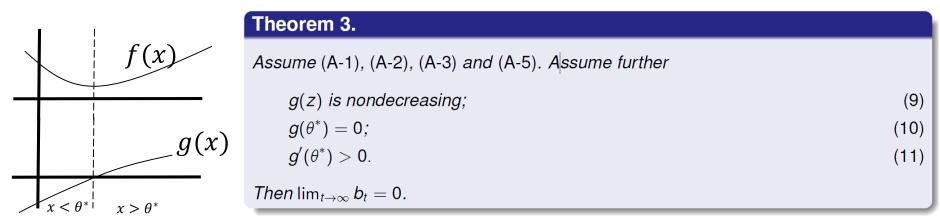
implying that (7) is fulfilled which by Lemma 3 imply the result.

(8)

Det matematisk-naturvitenskapelige fakultet

(A4) with a
$$\delta = 0$$

 $\exists \delta \geq 0 \text{ such that } g(x) \leq -\delta \text{ for } x < \theta^* \text{ and } g(x) \geq \delta \text{ for } x > \theta^*.$



Lemma 3.

Assume (A-1), (A-2), (A-3), (A-4) and (A-5). Assume for some constant $\delta > 0$ that

$$\inf_{z \in [\theta^* - A_t, \theta^* + A_t]} \left[\frac{g(z)}{z - \theta^*} \right] \ge \frac{\delta}{A_t} \text{ for } t > N$$

where

$$A_t = |\theta^1 - \theta^*| + C(\alpha_1 + \cdot \cdot \cdot + \alpha_{t-1}).$$

Then $\lim_{t\to\infty} b_t = 0$.

Need to be clever to come up with a "new δ " to this Lemma. We do not have a lover limit on g(z) directly. (7)

(8)

Det matematisk-naturvitenskapelige fakultet

Proof of Theorem 3

•
$$g'(\theta^*) = \lim_{x \to \theta^*} \frac{g(x) - g(\theta^*)}{x - \theta^*}$$
 imply

$$\frac{g(x)}{x- heta^*} = g'(heta^*) + arepsilon(x- heta^*), \quad ext{with } \lim_{t o 0} arepsilon(t) = 0$$

giving

$$arepsilon(x- heta^*)=rac{g(x)}{(x- heta^*)}-g'(heta^*)\geq -rac{1}{2}g'(heta^*)$$

for $|x - \theta^*| < \delta$ and δ small enough. Thereby

$$rac{g(x)}{x- heta^*} \geq rac{1}{2}g'(heta^*), \quad ext{for } |x- heta^*| \leq \delta$$

• For $\theta^* + \delta \le x \le \theta^* + A_t$, since g(z) is nondecreasing

$$\frac{g(x)}{x-\theta^*} \geq \frac{g(x+\delta)}{A_t} \geq \frac{\delta g'(\theta^*)}{2A_t}$$

while for $\theta^* - A_t \leq x \leq \theta^* - \delta$

$$\frac{g(x)}{x-\theta^*} = \frac{-g(x)}{\theta^*-x} \ge \frac{-g(x-\delta)}{A_t} \ge \frac{\delta g'(\theta^*)}{2A_t}$$

• Assuming (without loss of generality) $\delta/A_t \leq 1$ gives

$$\frac{g(x)}{x - \theta^*} \ge \frac{\delta g'(\theta^*)}{2A_t} \quad \text{for } 0 < |x - \theta^*| \le A_t \Rightarrow (7)$$

 $g(z) ext{ is nondecreasing;}$ - $g(heta^*) = 0;$ $g'(heta^*) > 0.$

Since $g'(\theta^*) > 0$ we can choose a δ so small that the inequality is fulfilled for all values closer to θ^*

 $A_t = | heta^1 - heta^*| + C(lpha_1 + \cdots + lpha_{t-1})$

Here « δ » in Lemma 3 Is: $\frac{\delta g'(\theta^*)}{2}$ where « δ » is selected above

12

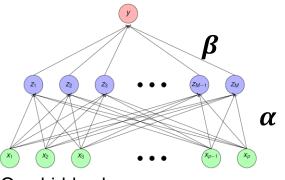
Det matematisk-naturvitenskapelige fakultet

Stochastic gradients and neural nets

$$Q(\theta) = R(\theta) + \lambda J(\theta) \quad R(\theta) = \sum_{i=1}^{m} (y_i - f(\mathbf{x}_i))^2 \\ \begin{pmatrix} & & \\ & &$$

- *Q* and their derivatives require a sum of *n* terms
- Can use a stochastic version by sampling randomly a subset of {1, ..., n}
- Called mini-batching
- Advantages (LeCun et al., 2012)
 - Much faster
 - Often give better solutions
 - Can be used to track changes
- Initial values (assuming g(z) = z):
 - Given α, the model is

$$y_i = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{z}_i$$



One hidden layer

- Can obtain reasonable values of $\boldsymbol{\beta}$ through least squares
- Random guess on α .

• Stoch_grad_NN.R

Det matematisk-naturvitenskapelige fakultet

Stochastic gradients and neural nets

- Many versions implemented
 - In R: ANN2::neuralnetwork, RSNNS::mlp, nnet::nnet, ...
- Typically, different tricks applied
 - Slow convergence: Fixed learning rate
 - SG through
 - randomly dividing data into minibatches
 - Updating sequentially on each minibach
 - epoch: One go through all data
 - Normalizing imput!
 - Momentum:

$$egin{aligned} m{v}^{t+1} &= m{\gamma}m{v}^t + m{lpha}
abla F(m{ heta}^t) \ m{ heta}^{t+1} &= m{ heta}^t - m{v}^{t+1} \end{aligned}$$

Adaptive learning rates

$$\theta^{t+1} = \theta^t - \frac{lpha}{\sqrt{||
abla F(heta^t)||^2 + arepsilon}}
abla F(heta^t)$$

- Reference: LeCun et al. (2012)
- Example: ANN2_zip.R

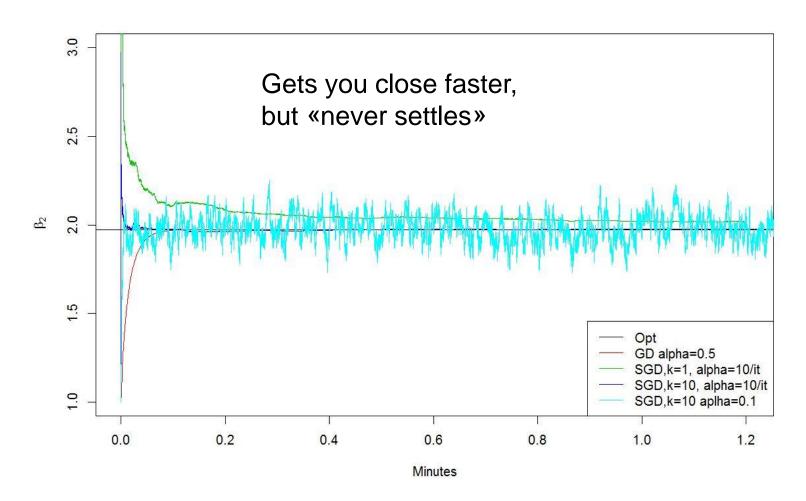
Det matematisk-naturvitenskapelige fakultet

Questions?

- What is the convergence result for SGD?
 - If the function is sufficiently regular (A-4) & the stochastic gradient is unbiased and not too large and (A-5). SGD will converge to the optimum by choosing the learning rate according to (A-1), (A-2)& (A-3)
- Have we proven convergence of SGD for Neural Nets?
 - No, we haven't proven that the NN- function is well behaved
- It is common to use fixed step size when applying SGD for Neural Nets, what might be the reason for this?
 - It converges faster to something close to the optimum.
 - Do you need to get all the way to θ^* to have a good enough result?
 - Half the stepsize if the convergence stall...

Det matematisk-naturvitenskapelige fakultet

Constant learning rate



Det matematisk-naturvitenskapelige fakultet

Fitting neural networks

 θ : Statistical slang for all parameters Here:

{ $\alpha_{0,m}, \alpha_m$ }, # parameters: (p + 1) M { $\beta_{0,m}, \beta_m$ }, # parameters: (M + 1) K

Quadratic loss K output variables

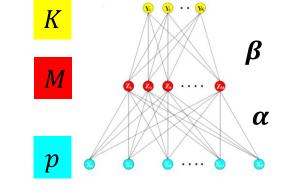
$$R(\theta) = L\left(Y, \hat{f}(X)\right)$$

=
$$\sum_{i=1}^{N} \sum_{k=1}^{K} \left(y_{ik} - \hat{f}_k(x_i)\right)^2$$

=
$$\sum_{i=1}^{N} R_i(\theta)$$

Contribution of the i'th data record

ord
$$R_i(\theta) = \sum_{k=1}^{K} \left(y_{ik} - \hat{f}_k(x_i) \right)^2$$



The "standard" approach:

- Minimize the loss
- Use steepest decent to solve this minimization problem
- The key to success is the efficient way of computing the gradient

Det matematisk-naturvitenskapelige fakultet

Steepest decent

- Minimize $R(\theta)$ wrt θ ,
 - Initialize: $\theta^{(0)}$
 - Iterate:

$$R(\theta) = \sum_{i=1}^{N} R_i(\theta)$$

$$\theta_{j}^{(r+1)} = \theta_{j}^{(r)} - \gamma_{r} \frac{\partial R(\theta)}{\partial \theta_{j}} \bigg|_{\theta = \theta^{(r)}}$$
Learning rate

$$\frac{\partial R(\theta)}{\partial \theta_j} = \sum_{i=1}^N \frac{\partial R_i(\theta)}{\partial \theta_j}$$

we compute term per data record (easily aggregated from parallel computation)

11. september 2018

 $\partial R_i(\theta)$

 $\partial \theta_i$

Det matematisk-naturvitenskapelige fakultet

Here: $g_k(T) = T_k$ $T_k = \beta_k^T z_i$

Squared error loss $T_{k} = \beta_{k}^{T} z_{i}$ Output layer: $\frac{\partial R_{i}(\theta)}{\partial \beta_{k,m}} = -2 \left(y_{i,k} - f_{k}(x_{i}) \right) g'_{k}(\beta_{k}^{T} z_{i}) z_{m,i}$ $= \delta_{k,i} \cdot z_{m,i}$

Hidden
layer:
$$\frac{\partial R_i(\theta)}{\partial \alpha_{m,l}} = -\sum_{k=1}^{K} 2(y_{ik} - f_k(x_i))g'_k(\beta_k^T z_i)\beta_{km} \sigma'(\alpha_m^T x_i)x_{i,l}$$
$$= \underbrace{s_{m,i}}^{Y} \cdot \underbrace{x_{i,l}}^{Y}$$

Back propagation equation

$$s_{m,i} = \sigma'(\alpha_m^T x_i) \sum_{k=1}^K \beta_{km} \delta_{k,i}$$

11. september 2018

STK 4300 Lecture 4- Neural nets

Det matematisk-naturvitenskapelige fakultet

Back propagation (delta rule)

• At top level. compute:

$$\delta_{k,i} = -2\left(y_{i,k} - f_k(x_i)\right)g'_k(\beta_k^T z_i), \quad \forall (i,k)$$

• At hidden level, compute:

$$s_{m,i} = \sigma'(\alpha_m^T x_i) \sum_{k=1}^K \beta_{k,m} \delta_{k,i}, \quad \forall (i,m)$$

• Evaluate:

$$\frac{\partial R_i(\theta)}{\partial \beta_{k,m}} = \delta_{k,i} z_{m,i} \& \frac{\partial R_i(\theta)}{\partial \alpha_{m,l}} = s_{m,i} x_{i,l}$$

• Update : γ_r is fixed $\beta_{k,m}^{(r+1)} = \beta_{k,m}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \beta_{k,m}} \Big|_{\theta=\theta^{(r)}}$ $\alpha_{m,l}^{(r+1)} = \alpha_{m,l}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \alpha_{m,l}} \Big|_{\theta=\theta^{(r)}}$

Det matematisk-naturvitenskapelige fakultet

Stochastic gradient decent

$$\beta_{k,m}^{(r+1)} = \beta_{k,m}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \beta_{k,m}} \bigg|_{\theta = \theta^{(r)}} \alpha_{m,l}^{(r+1)} = \alpha_{m,l}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \alpha_{m,l}} \bigg|_{\theta = \theta^{(r)}}$$

- Equations above updates with all data at the same time
- The form invites to update estimate using fractions of data
 - Perform a random partition of training data in to batches: $\{B_i\}_{i=1}^{\#Batches}$
 - For all batches cycle over the data in this batch to update data

$$\beta_{k,m}^{(r+1)} = \beta_{k,m}^{(r)} - \gamma_r \sum_{i \in B_j} \frac{\partial R_i}{\partial \beta_{k,m}} \bigg|_{\theta = \theta^{(r)}} \alpha_{m,l}^{(r+1)} = \alpha_{m,l}^{(r)} - \gamma_r \sum_{i \in B_j} \frac{\partial R_i}{\partial \alpha_{m,l}} \bigg|_{\theta = \theta^{(r)}}$$
- Repeat

- One iteration is one update of the parameter (using one batch)
- One **Epoch** is one scan through all data (using all batches in the partition)

Det matematisk-naturvitenskapelige fakultet

Online learning (Batch size =1)

• Learning based on one data point at the time

$$\begin{split} \beta_{k,m}^{(r)} &= \beta_{k,m}^{(r-1)} - \gamma_r \frac{\partial R_i}{\partial \beta_{k,m}} \bigg|_{\theta = \theta^{(r-1)}} \\ \alpha_{m,l}^{(r)} &= \alpha_{m,l}^{(r-1)} - \gamma_r \frac{\partial R_i}{\partial \alpha_{m,l}} \bigg|_{\theta = \theta^{(r-1)}} \end{split}$$

- You might re-iterate (for several epochs) when completed or if you have an abundance of data just take on new data as they come along (hence the name)
- For convergence: $\gamma_r \to 0$, as $\sum \gamma_r \to \infty$ and $\sum \gamma_r^2 < \infty$, e.g. $\gamma_r = \frac{1}{r}$ (as shown earlier)

Det matematisk-naturvitenskapelige fakultet

SGD for dependent data

• Consider spatial data:

$$oldsymbol{Y} = egin{pmatrix} Y(oldsymbol{s}_1) \ Y(oldsymbol{s}_2) \ dots \ Y(oldsymbol{s}_2) \ dots \ Y(oldsymbol{s}_n) \end{pmatrix} \sim N(oldsymbol{\mu},oldsymbol{\Sigma})$$

where $\boldsymbol{\mu} = \boldsymbol{\mu} \boldsymbol{I}$ and $\boldsymbol{\Sigma} = \sigma^2 \boldsymbol{R} + \boldsymbol{\tau}^2 \boldsymbol{I}$, that is

$$\operatorname{cov}[Y(s_i), Y(s_j)] = egin{cases} \sigma^2 r(||s_i - s_j||; \phi) & s_i
eq s_j \ \sigma^2 + au^2 & s_j = s_j \end{cases}$$

- $\bullet\,$ Realisation of a process defined continuously in a space ${\cal S}\,$
- Log-likelihood with $\theta = (\mu, \sigma^2, \tau^2, \phi)$

$$l(\boldsymbol{\theta}) = -\frac{n}{2}\log 2\pi - \frac{1}{2}\log(|\boldsymbol{\Sigma}|) - \frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})$$

• In general, computational burden is $O(n^3)$, problematic for large *n*

Det matematisk-naturvitenskapelige fakultet

ML and Kullback-Leibler divergence

- True distribution g(y), assumed model $f_{\theta}(y)$
- Aim: Specify θ so that $f_{\theta}(y) \approx g(y)$
- Approach: Minimize Kullback-Leibler distance

$$ext{KL}(f_{ heta}, g) = \int \log\left(rac{g(y)}{f_{ heta}(y)}
ight) g(y) dy \ = \int \log(g(y))g(y)g(y) dy - \int \log(f_{ heta}(y))g(y) dy \geq 0$$

- Equivalent to maximize $\int \log(f_{\theta}(y))g(y)dy$, problem g(y) unknown
- IID data: Approximate g(y) by $\hat{g}(y)$: $\Pr(Y = y_i) = \frac{1}{n}$
 - Maximize $\sum_{i=1}^{n} \frac{1}{n} \log(f_{\theta}(y_i)) = \frac{1}{n} \ell(\theta)$
- Spatial data:

$$KL(f_{\theta}, g) = \int \int \log\left(\frac{g(\boldsymbol{y}|\boldsymbol{s})}{f_{\theta}(\boldsymbol{y}|\boldsymbol{s})}\right) g(\boldsymbol{y}|\boldsymbol{s}) g(\boldsymbol{s}) d\boldsymbol{y} d\boldsymbol{s}$$
$$= \int \int \log(g(\boldsymbol{y}|\boldsymbol{s})) g(\boldsymbol{y}|\boldsymbol{s}) g(\boldsymbol{s}) d\boldsymbol{y} d\boldsymbol{s} -$$
$$\int \int \log(f_{\theta}(\boldsymbol{y}|\boldsymbol{s})) g(\boldsymbol{y}|\boldsymbol{s}) g(\boldsymbol{s}) d\boldsymbol{y} d\boldsymbol{s}$$

Not obvious how to approximate $g(\mathbf{y}, \mathbf{s}) = g(\mathbf{y}|\mathbf{s})g(\mathbf{s})!$

Det matematisk-naturvitenskapelige fakultet

KL and Geostatistics

- We have one set of observations y. Can approximate g(y, s) giving probability 1 to this.
 - Leads to the maximum (log-)likelihood approach
 - Has the computational burden mentioned earlier
 - Also has a problem in a poor description of *g*, lead to that ML estimate may not behave well!
- Liang et al. (2013): Approximate KL by

$$\widehat{K}L(f_{\theta},g) = C - \frac{1}{\binom{n}{m}} \sum_{k=1}^{\binom{n}{m}} \log(f_{\theta}(\boldsymbol{y}_{k}|\boldsymbol{s}_{k}))$$

where $(\mathbf{y}_k, \mathbf{s}_k)$ is a subset of (\mathbf{y}, \mathbf{s}) of size m.

• Find θ as the solution of

$$\frac{\partial}{\partial \boldsymbol{\theta}} \widehat{K} L(f_{\boldsymbol{\theta}}, \boldsymbol{g}) = \boldsymbol{C} - \frac{1}{\binom{n}{m}} \sum_{k=1}^{\binom{n}{m}} H(\boldsymbol{\theta}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k})$$
$$H(\boldsymbol{\theta}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}) = \frac{\partial}{\partial \boldsymbol{\theta}} \log(f_{\boldsymbol{\theta}}(\boldsymbol{y}_{k} | \boldsymbol{s}_{k}))$$

by the stochastic gradient algorithm!

Det matematisk-naturvitenskapelige fakultet

Example

$$\log f(\mathbf{y}_{k}|\mathbf{s}_{k}) = -\frac{m}{2}\log 2\pi - \frac{1}{2}\log|\Sigma_{k}| - \frac{1}{2}(\mathbf{y}_{k} - \mu\mathbf{1}_{m})^{T}\Sigma_{k}^{-1}(\mathbf{y}_{k} - \mu\mathbf{1}_{m})$$
$$(\mathbf{\Sigma}_{k})_{i,j} = \operatorname{cov}(Y(\mathbf{s}_{k,i}) - Y(\mathbf{s}_{k,j}) = \tau^{2}I(j=j) + \sigma^{2}\exp(-(||\mathbf{s}_{k,i} - \mathbf{s}_{k,j}||/\phi)$$

$$(\mathbf{R}_k)_{i,j} = \exp(-(||\mathbf{s}_{k,i} - \mathbf{s}_{k,j}||/\phi)$$

$$\begin{split} H_{\mu}(\boldsymbol{\theta}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}) &= \mathbf{1}_{m}^{T} \boldsymbol{\Sigma}_{k}^{-1}(\boldsymbol{y}_{k} - \mu \mathbf{1}_{m}) \\ H_{\sigma^{2}}(\boldsymbol{\theta}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}) &= -\frac{1}{2} \mathrm{tr}(\boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{R}_{k}) + \frac{1}{2} (\boldsymbol{y}_{k} - \mu \mathbf{1}_{m})^{T} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{R}_{k} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{y}_{k} - \mu \mathbf{1}_{m}) \\ H_{\tau^{2}}(\boldsymbol{\theta}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}) &= -\frac{1}{2} \mathrm{tr}(\boldsymbol{\Sigma}_{k}^{-1}) + \frac{1}{2} (\boldsymbol{y}_{k} - \mu \mathbf{1}_{m})^{T} \boldsymbol{\Sigma}_{k}^{-2} (\boldsymbol{y}_{k} - \mu \mathbf{1}_{m}) \\ H_{\phi}(\boldsymbol{\theta}, \boldsymbol{y}_{k}, \boldsymbol{s}_{k}) &= -\frac{1}{2} \mathrm{tr}(\boldsymbol{\Sigma}_{k}^{-1} \frac{d \boldsymbol{R}_{k}}{d \phi}) + \frac{1}{2} (\boldsymbol{y}_{k} - \mu \mathbf{1}_{m})^{T} \boldsymbol{\Sigma}_{k}^{-1} \frac{d \boldsymbol{R}_{k}}{d \phi} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{y}_{k} - \mu \mathbf{1}_{m}) \\ \frac{d(\boldsymbol{R}_{k})_{i,j}}{d \phi} = ||\boldsymbol{s}_{k,i} - \boldsymbol{s}_{k,j}||/\phi^{2} \cdot \exp(-(||\boldsymbol{s}_{k,i} - \boldsymbol{s}_{k,j}||/\phi) \end{split}$$