

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 Sequential Monte Carlo (some retake)

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Det matematisk-naturvitenskapelige fakultet

Recap

• Sequential Mote Carlo $x_t \sim f(x_t | x_{t-1})$,

$$- x_t^i \sim g(x_t^i | x_{t-1}^i), \quad w_t^i = w_{t-1}^i \frac{f(x_t^i | x_{t-1}^i)}{g(x_t^i | x_{t-1}^i)}$$

- Problem: weigth accumulation, $N_{\rm eff} \rightarrow 1$
- Particle filter Resampling
- New problem: Degeneracy

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow \cdots \rightarrow x_n$$

$$f(\mathbf{x}) = f(x_1)f(x_2|x_1)f(x_3|x_2)\cdots f(x_n|x_{n-1})$$

 $g(\mathbf{x}) = g(x_1)g(x_2|x_1)g(x_3|x_2)\cdots g(x_n|x_{n-1})$

Det matematisk-naturvitenskapelige fakultet

Proposal

Det matematisk-naturvitenskapelige fakultet

Resample = red

Red is a good approximation to $p(x_1)$

Det matematisk-naturvitenskapelige fakultet

Step 2

Red is a good approximation to $p(x_2)$

Det matematisk-naturvitenskapelige fakultet

Step 3

Red is a good approximation to $p(x_3)$

Det matematisk-naturvitenskapelige fakultet

Step 4

Red is a good approximation to $p(x_4)$

Det matematisk-naturvitenskapelige fakultet

Step 5

Red is a good approximation to $p(x_5)$

Det matematisk-naturvitenskapelige fakultet

50 samples using resampling

Red is a good approximation to $p(x_{10})$

Det matematisk-naturvitenskapelige fakultet

How 50 samples should look

Det matematisk-naturvitenskapelige fakultet

When is what a good approximation?

Sequential Monte Carlo particle filter:

• Sampling along the way is a good approximation for the marginal distribution at each step, $f(x_t)$

- At the end you can trace back the sample path for the final sample, this could have been an approximation for a sample from full distribution, but it is degenerated. Few samples in the beginning of the path. $f(x_1, ..., x_t, ..., x_n)$ is not good (as seen)
- If you try to use the final sample to get $f(x_t)$, this is not a good sample

Det matematisk-naturvitenskapelige fakultet

Last time cont...

Sequential Monte Carlo for Hidden Markov Model

- Want to sample from $f(x_t) \propto p(x_t^i | x_{t-1}^i) p(y_t | x_t^i)$

- General $x_t^i \sim q(x_t | x_{t-1}^i, y_n), \ w_t^i = w_{t-1}^i \frac{p(x_t^i | x_{t-1}^i) p(y_t | x_t^i)}{q(x_t^i | x_{t-1}^i, y_n)}$

- Bootstrap filter $x_t^i \sim p(x_t | x_{t-1}^i), \quad w_t^i = w_{t-1}^i p(y_t | x_t^i)$

- Same problems as before:
 - Weigth accumulation, $N_{\rm eff} \rightarrow 1$
 - Resampling \rightarrow Degeneracy
 - Terrain navigation

• So you solve the filter problem, $f(x_t|y_{1:t})$ The difference is which **not** the smoothing problem, $f(x_t|y_{1:n})$ The difference is which **not** the full conditioning problem $f(x_{1:n}|y_{1:n})$ data you condition to

Ŷ

14

- At the end you can trace back the sample path for the final sample, this could have been an approximation for a sample from full distribution, but it is degenerated. Few samples in the beginning of the path. $f(x_{1:n}|y_{1:n})$ is not good (as seen)
- Sequential Monte Carlo bootstrap filter:
 Sampling along the way is a good approximation for the marginal distribution at each step, *f*(*x*_t|*y*_{1:t})

If you try to use the final sample to

get $f(x_t|y_{1:n})$, this is not a good sample

When is what a good approximation?

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet

Last time cont...

• Inference in Sequential Markov models

- Maximum likelihood
 - Likelihood by sampling (bootstrap filter) $\theta =?$ $p(\mathbf{y}_{1:t}|\theta) = p(y_1|\theta) \prod_{s=2}^{t} p(y_s|\mathbf{y}_{1:s-1};\theta) \approx \sum_{i=1}^{N} w_{t-1}^i p(y_s|x_s^i;\theta)$
- Bayesian approach
 - Direct approach
 - Dynamic approach
 - Sufficient statistics ← Repeat

 $p(\theta)$ prior Want $p(\theta|y_{1:n})$ (posterior)

Det matematisk-naturvitenskapelige fakultet

Maximum likelihood in SMC

$$p(\mathbf{y}_{1:t}|\theta) = p(y_1|\theta) \prod_{s=2}^{t} p(y_s|\mathbf{y}_{1:s-1};\theta)$$

$$p(y_s|y_{1:s-1},\theta) = \int_{x_s} p(x_s|y_{1:s-1},\theta)p(y_s|x_s,\theta)dx_s$$

$$= \int_{x_s} \int_{x_{s-1}} p(x_s,x_{s-1}|y_{1:s-1},\theta)p(y_s|x_s,\theta)dx_{s-1}dx_s$$

$$= \int_{x_s} \int_{x_{s-1}} p(x_s|x_{s-1},\theta)p(x_{s-1}|y_{1:s-1},\theta)p(y_s|x_s,\theta)dx_{s-1}dx_s$$
We sample this We have this for $s-1$ with: To get x_s^i (x_{s-1}^i, w_{s-1}^i), $i = 1, ..., M$
We get the weight update for x_s^i ($x_s^i, u_s^i w_{s-1}^i$), $i = 1, ..., M$
Sample for s : $(x_s^i, u_s^i w_{s-1}^i), i = 1, ..., M$

Det matematisk-naturvitenskapelige fakultet

Issue: Direct approach

Direct approach samples theta initially and is never able to resample it thus at each resampling it is a thinning/depletion of unique elements

Sample from prior

UiO **Solution** Matematisk institutt Det matematisk-naturvitenskapelige fakultet

Issue: Dynamic approach

Dynamic approach. We can resample θ_t at each time step This solves the problem of degeneration (but we solve a different problem...)

Original problem

New problem

This problem is equivalet with the «no θ problem»

$$\widetilde{x_t} = (x_t, \theta_t)$$
«Dynamic duo»

Det matematisk-naturvitenskapelige fakultet

Approach using sufficient statistics

- We can update the statistics recursively
- We can compute sufficient statistics for θ $p(\theta | \mathbf{x}_{1:t}) = p(\theta | S_t), S_t$ sufficient statistic.
- This opens for resampling of theta Image:
- We can expand this to the hidden Markov model as long as the hidden variable is the one influenced by theta
- This keeps the original conditioning structure (as x_t "protect" θ from y_t)

Det matematisk-naturvitenskapelige fakultet

SMC and sufficient statistics general

- Assume $p(y_t|x_t)$ do not depend on θ .
- Assume $p(\theta | \mathbf{x}_{1:t}) = p(\theta | S_t)$, S_t sufficient statistic.
- Assume $S_t = h(S_{t-1}, x_{t-1}, x_t)$
- Fearnhead (2002) and Storvik (2002): Focus on $p(x_t, S_t | \mathbf{y}_{1:t})$, not $p(x_t, \theta | \mathbf{y}_{1:t})$.
- Assume a properly weighted sample { $(x_{t-1}^i, S_{t-1}^i, w_{t-1}^i), i = 1, ..., N$ } with respect to $p(x_{t-1}, S_{t-1}|\mathbf{y}_{1:t-1})$
- Similar recursions as before:

$$p(x_{t}, S_{t}|\mathbf{y}_{1:t-1}) = \int_{x_{t-1}} p(x_{t}, S_{t}|x_{t-1}, S_{t-1}) p(x_{t-1}, S_{t-1}|\mathbf{y}_{1:t-1}) dx_{t-1} dS_{t-1}$$

$$\approx \sum_{i=1}^{N} w_{t-1}^{i} p(x_{t}, S_{t}|x_{t-1}^{i}, S_{t-1}^{i})$$

$$p(x_{t}, S_{t}|\mathbf{y}_{1:t}) \approx c \cdot \sum_{i=1}^{N} w_{t-1}^{i} p(x_{t}, S_{t}|x_{t-1}^{i}, S_{t-1}^{i}) p(y_{t}|x_{t}).$$

• Simulation from $p(x_t, S_t | x_{t-1}^i, S_{t-1}^i)$ (possible proposal function)

Simulate $\theta^{i} \sim p(\theta | x_{t-1}^{i}, S_{t-1}^{i}) = p(\theta | S_{t-1}^{i})$. Bootstrap filter

2 Simulate $x_t^i \sim p(x_t | x_{t-1}^i, \theta^i)$.

Put
$$S_t^i = h(S_{t-1}^i, x_{t-1}^i, x_t^i)$$
.

for the «dynamic duo»...

«Dynamic duo»

Det matematisk-naturvitenskapelige fakultet

Algorithm Storvik filter

Algorithm 3 SMC with parameter updating

SMC_lin_bin_parest_suff.R

Det matematisk-naturvitenskapelige fakultet

Example Lemmings evolving parameter: a

