

## $\mathrm{UiO}:$ Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## STK-4051/9051 Computational Statistics Spring 2021

 Variance reductionInstructor: Odd Kolbjørnsen, oddkol@math.uio.no

## Additional reference person

- liliana.vazquezfernandez@fhi.no (or shorter version: livf@fhi.no).

Det matematisk-naturvitenskapelige fakultet

## Today

- Variance reduction
- SMC- retake


## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Monte Carlo methods

- Aim (following notation from book):

$$
\mu=E^{f(\mathbf{X})}[h(\mathbf{X})]= \begin{cases}\left.\int_{\mathbf{x}} h(\mathbf{x}) f(\mathbf{x})\right) d \mathbf{x} & \mathbf{x} \text { continuous } \\ \sum_{\mathbf{x}} h(\mathbf{x}) f(\mathbf{x}) & \mathbf{x} \text { discrete }\end{cases}
$$

- Monte Carlo:
(1) Simulate $\mathbf{X}_{i} \sim f(\mathbf{x}), i=1, \ldots, n$
(2) Approximate $\mu$ by

$$
\hat{\mu}_{M C}=\frac{1}{n} \sum_{i=1}^{n} h\left(\mathbf{x}_{i}\right)
$$

- Properties:
- Unbiased $E\left[\hat{\mu}_{M C}\right]=\mu$
- If $X_{1}, \ldots, X_{n}$ are independent
- Variance: $\operatorname{var}\left[\hat{\mu}_{M C}\right]=\frac{1}{n} \operatorname{var}[h(\mathbf{X})]$
- Consistent: $\hat{\mu}_{M C} \rightarrow \mu$ as $n \rightarrow \infty$ if $\operatorname{var}[h(\mathbf{X})]<\infty$
- Estimate of variance:

$$
\widehat{\operatorname{var}}\left[\hat{\mu}_{M C}\right]=\frac{1}{n-1} \sum_{i=1}^{n}\left(h\left(\mathbf{x}_{i}\right)-\hat{\mu}_{M C}\right)^{2}
$$

- Can we do better than this?


## Recap

- Exact methods
- Inversion/transformation methods
- Rejection sampling
- Approximate methods
- Sampling importance resampling
- Sequential Monte Carlo
- Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
- Importance sampling
- Antithetic sampling
- Control variates
- Rao-blackwellization
- Common random numbers

Det matematisk-naturvitenskapelige fakultet

## Variance Reduction

For importance sampling we have seen two options:

$$
\mu=\int h(\mathbf{x}) f(\mathbf{x}) d \mathbf{x}=\int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d \mathbf{x}=\frac{\int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d \mathbf{x}}{\int \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d \mathbf{x}}
$$

- Assume $X_{1}, \ldots, X_{n}$ iid from $g(\mathbf{x})$.
- Two alternative estimates

$$
\begin{aligned}
& \hat{\mu}_{I S}^{*}=\frac{1}{n} \sum_{i=1}^{n} h\left(\mathbf{X}_{i}\right) w^{*}\left(\mathbf{X}_{i}\right), \quad w^{*}\left(X_{i}\right)=\frac{f\left(\mathbf{X}_{i}\right)}{g\left(\mathbf{X}_{i}\right)} \\
& \hat{\mu}_{I S}=\sum_{i=1}^{n} h\left(\mathbf{X}_{i}\right) w\left(\mathbf{X}_{i}\right), \quad w\left(\mathbf{X}_{i}\right)=\frac{w^{*}\left(\mathbf{X}_{i}\right)}{\sum_{j=1}^{n} w^{*}\left(\mathbf{X}_{i}\right)}
\end{aligned}
$$

- $w^{*}\left(\mathbf{X}_{i}\right)$ called importance weights
- $w\left(\mathbf{X}_{i}\right)$ called the normalized importance weights


## We should use normalized importance weight if:

$$
\begin{aligned}
\operatorname{cov}\left[t(\mathbf{X}), w^{*}(\mathbf{X})\right] & >\frac{\mu \operatorname{var}\left[w^{*}(\mathbf{X})\right]}{2} \\
& \Uparrow \\
\operatorname{cor}\left[t(\mathbf{X}), w^{*}(\mathbf{X})\right] & >\frac{\sqrt{\operatorname{var}\left[w^{*}(\mathbf{X})\right]}}{2 \sqrt{\operatorname{var}[t(\mathbf{X})]} / \mu}=\frac{\operatorname{cv}\left[w^{*}(\mathbf{X})\right]}{2 \operatorname{cv}[t(\mathbf{X})]}
\end{aligned}
$$

- Example: imp_samp_beta.R
- Taylor approximation of $1 / \bar{w}^{*}$ around 1:

$$
t\left(\mathbf{X}_{i}\right)=h\left(\mathbf{X}_{i}\right) w^{*}\left(\mathbf{X}_{i}\right)
$$

$$
\frac{1}{\bar{w}^{*}} \approx 1-\left(\bar{w}^{*}-1\right)+\left(\bar{w}^{*}-1\right)^{2}
$$

## Imp_sam_beta.R

- Sample: uniform $(0,1)$
- Target: beta(2,3)

- Estimate mean

$$
\begin{aligned}
\operatorname{cor}\left[t(\mathbf{X}), w^{*}(\mathbf{X})\right] & >\frac{\sqrt{\operatorname{var}\left[w^{*}(\mathbf{X})\right]}}{2 \sqrt{\operatorname{var}[t(\mathbf{X})]} / \mu}=\frac{\operatorname{cv}\left[w^{*}(\mathbf{X})\right]}{2 \operatorname{cv}[t(\mathbf{X})]} \\
0.7120781 & >\frac{0.6043563}{2 * 0.6547519}=0.4615155
\end{aligned}
$$

Bootstrapping to get uncertainty:

|  | Estimate | SD | RMSE |
| :--- | :--- | ---: | ---: | ---: |
| mu. hat. star | 0.399958 | 0.008107 | 0.008103 |
| mu. hat | 0.399971 | 0.006126 | 0.006123 |

## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Control variates

- Of interest $\mu=E[h(\mathbf{X})]$
- $\theta=E[c(\mathbf{Y})]$ known
- ( $\mathbf{X}, \mathbf{Y}$ ) correlated (often $\mathbf{Y}=\mathbf{X}$ )
- $\left\{\left(\mathbf{X}_{i}, \mathbf{Y}_{i}\right), i=1, \ldots, N\right\}$ iid pairs
- Possible alternative estimate

$$
\begin{aligned}
& \hat{\mu}_{C V}=\hat{\mu}_{M C}+\lambda\left(\hat{\theta}_{M C}-\mid \theta\right) \\
& \hat{\mu}_{M C}=N^{-1} \sum_{i=1}^{N} h\left(\mathbf{X}_{i}\right) \\
& \hat{\theta}_{M C}=N^{-1} \sum_{i=1}^{N} c\left(\mathbf{Y}_{i}\right)
\end{aligned}
$$

- Properties:

$$
\begin{aligned}
E\left[\hat{\mu}_{C V}\right] & =\mu \\
\operatorname{var}\left[\hat{\mu}_{C V}\right] & =\operatorname{var}\left[\hat{\mu}_{M C}\right]+\lambda^{2} \operatorname{var}\left[\hat{\theta}_{M C}\right]+2 \lambda \operatorname{cov}\left[\hat{\mu}_{M C}, \hat{\theta}_{M C}\right]
\end{aligned}
$$

- Can choose $\lambda$ to minimize this:

$$
\lambda=-\frac{\operatorname{cov}\left[\hat{\mu}_{M C}, \hat{\theta}_{M C}\right]}{\operatorname{var}\left[\hat{\theta}_{M C}\right]}
$$

## Importance sampling

- Importance sampling:
- $\mu=E^{f}[h(\mathbf{X})]=E^{g}\left[w^{*}(\mathbf{X}) h(\mathbf{X})\right]$ with $w^{*}(\mathbf{x})=f(\mathbf{x}) / g(\mathbf{x})$
- We known $\theta=E\left[w^{*}(\mathbf{X})\right]=1$
- Possible alternative estimate

$$
\hat{\mu}_{I S C V}=\hat{\mu}_{I S}^{*}+\lambda\left(\bar{w}^{*}-1\right) \quad \lambda=-\frac{\operatorname{cov}\left[\hat{\mu}_{M C}, \hat{\theta}_{M C}\right]}{\operatorname{var}\left[\hat{\theta}_{M C}\right]}
$$

Imp_sam_beta. $R \quad \lambda=-0.3110773$

|  | Estimate | SD | RMSE |
| :--- | ---: | ---: | ---: | ---: |
| mu. hat.star | 0.400116 | 0.008029 | 0.008026 |
| mu. hat | 0.400106 | 0.005725 | 0.005723 |
| mu. hat. cV | 0.400083 | 0.005466 | 0.005464 |

Improvement also for:

$$
\begin{aligned}
& \lambda=-0.25 \rightarrow 0.005587 \\
& \lambda=-0.40 \rightarrow 0.005719
\end{aligned}
$$

In example:
Robust towards estimation of $\lambda$

Det matematisk-naturvitenskapelige fakultet

## Questions

## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Rao- Blackwellization

- Of interest $\mu=E[h(\mathbf{X})]$
- Assume $\mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$ and $E\left[h(\mathbf{X}) \mid \mathbf{X}_{2}\right]$ is known.
- Alternative estimate

$$
\hat{\mu}_{R B}=N^{-1} \sum_{i=1}^{N} E\left[h(\mathbf{X}) \mid \boldsymbol{X}_{2}=\mathbf{x}_{i 2}\right]
$$

- Properties:

$$
E\left[\hat{\mu}_{R B}\right]=E\left[E\left[h(\mathbf{X}) \mid \mathbf{X}_{2}\right]\right]=E[h(\mathbf{X})]=\mu
$$

```
law of:
Total Expectation
```

- Note

$$
\operatorname{var}\left[h\left(\mathbf{X}_{i}\right)\right]=E\left[\operatorname{var}\left[h\left(\mathbf{X}_{i}\right) \mid \mathbf{X}_{2}\right]\right]+\operatorname{var}\left[E\left[h(\mathbf{X}) \mid \mathbf{X}_{2}\right]\right] \geq \operatorname{var}\left[E\left[h(\mathbf{X}) \mid \mathbf{X}_{2}\right]\right.
$$

implying

$$
\operatorname{var}\left[\hat{\mu}_{M C}\right] \geq \operatorname{var}\left[\hat{\mu}_{R B}\right]
$$

law of:
Total Variance

## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Example 1

- Model

$$
\begin{aligned}
\sigma & \sim \operatorname{Unif}[0,2] \\
X \mid \sigma & \sim N(0, \sigma) \\
E[X] & =E[E[X \mid \sigma]]=E[0]=0
\end{aligned}
$$

- What is $\tau=\operatorname{Var}[X]=E\left[X^{2}\right]$ ?
- Direct MC:
- Simulate $X_{1}, \ldots, X_{N}$ from model
- $\hat{\tau}_{M C}=\frac{1}{N} \sum_{i=1}^{N} X_{i}^{2}$
- Rao-Blackwellization:
- $E\left[X^{2} \mid \sigma^{2}\right]=\sigma^{2}$
- Simulate $\sigma_{1}, \ldots, \sigma_{N} \sim \operatorname{Unif}[0,2]$
- $\hat{\tau}_{R B}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{2}$
- Example_RB.R
- Analytically: $\tau=\operatorname{Var}[X]=E\left[X^{2}\right]=8 / 6=1.333$


## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Example 2 (spatial statistics)

- Spatial dependency:

$$
\begin{gathered}
E\{z(x)\}=0 \\
\operatorname{cov}(z(x), z(x+h))=\rho^{h} \\
\rho \sim \operatorname{unif}[0.85,0.95]
\end{gathered}
$$

- What is: $\mathrm{E}\{z(x) \mid z(0)=1\}$ ?



## Direct vs Rao-Blackwellization N=1000



Det matematisk-naturvitenskapelige fakultet

## Direct vs Rao-Blackwellization N=100



Det matematisk-naturvitenskapelige fakultet

## Direct vs Rao-Blackwellization N=10



Det matematisk-naturvitenskapelige fakultet

## Direct vs Rao-Blackwellization N=10



Det matematisk-naturvitenskapelige fakultet

## Questions

## Antithetic sampling

Things that are antithetic to one another contradict or oppose each other.

- Assume available $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$, identically distributed with $\operatorname{var}\left[\hat{\mu}_{j}\right]=\sigma^{2} / n$
- Assume $\operatorname{cov}\left[\hat{\mu}_{1}, \hat{\mu}_{2}\right]<0$.
- Define $\hat{\mu}_{A S}=\frac{1}{2}\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right)$

$$
\begin{aligned}
\operatorname{var}\left[\hat{\mu}_{A S}\right] & =\frac{1}{4}\left(\operatorname{var}\left[\hat{\mu}_{1}\right]+\operatorname{var}\left[\hat{\mu}_{2}\right]\right)+\frac{1}{2} \operatorname{cov}\left[\hat{\mu}_{1}, \hat{\mu}_{2}\right] \\
& =\frac{(1+\rho) \sigma^{2}}{2 n}
\end{aligned}
$$

where $\rho=\operatorname{cor}\left[\hat{\mu}_{1}, \hat{\mu}_{2}\right]$.

- Gain by including $\hat{\mu}_{2}$ a factor of $\frac{1+\rho}{2}$ !


## Possible to construct such $\hat{\mu}_{1}, \hat{\mu}_{2}$ ?

## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Antithetic sampling

- Main idea: Most simulation procedures for generating $\mathbf{X} \sim f(\mathbf{x})$ is based on some transformation $X=h(\mathbf{U})$ where $\mathbf{U}=\left(U_{1}, \ldots, U_{m}\right)$ are iid uniform variables
- If $U_{j}$ is uniform $[0,1]$, then also $1-U_{j}$ is uniform $[0,1]$
- $h(\mathbf{U})$ and $h(\mathbf{1}-\mathbf{U})$ will typically have negative correlation.
- Choose $\mathbf{X}_{i}=h\left(\mathbf{U}_{i}\right), \mathbf{Y}_{i}=h\left(\mathbf{1}-\mathbf{U}_{i}\right)$

$$
\begin{aligned}
& \hat{\mu}_{1}=n^{-1} \sum_{i=1}^{n} h\left(\mathbf{U}_{i}\right) \\
& \hat{\mu}_{2}=n^{-1} \sum_{i=1}^{n} h\left(\mathbf{1}-\mathbf{U}_{i}\right)
\end{aligned}
$$

- Can be generalized to other settings as well.
- The following slides:
- Proof of $\operatorname{cor}\left[h\left(\mathbf{U}_{i}\right), h\left(\mathbf{1}-\mathbf{U}_{i}\right)\right] \leq 0$ for $h$ monotone function in each $U_{j}$.


## Antithetic sampling-theoretical derivations

- Assume $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)$ iid sample
- Assume $\hat{\mu}_{j}=n^{-1} \sum_{i=1}^{n} h_{j}\left(\mathbf{x}_{i}\right)$ with $E\left[h_{j}\left(\mathbf{x}_{i}\right)\right]=\mu$.
- Assume $h_{j}\left(\mathbf{X}_{i}\right)$ is increasing in each argument
- Result: $\operatorname{cor}\left[h_{1}\left(\mathbf{X}_{i}\right), h_{2}\left(\mathbf{X}_{i}\right)\right] \geq 0$.

$$
\begin{aligned}
& \text { If } h_{1}(\boldsymbol{x}), h_{2}(\boldsymbol{x}) \text { is non decreasing in each argument } \boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \\
& h_{j}(\boldsymbol{x})>h_{j}(\boldsymbol{x}-\boldsymbol{h}) \text {, for all } \boldsymbol{h} \text { such that } h_{i}>0, i=1, \ldots, m \\
& \text { then } \operatorname{cor}\left(h_{1}\left(\boldsymbol{X}_{i}\right), h_{2}\left(\boldsymbol{X}_{i}\right)\right) \geq 0
\end{aligned}
$$

Proof by induction on dimension:

1) Prove that it is true in dimension 1
2) Prove that if it is true for dimension $m-1$ then it is true for dimension $m$

Note slightly confusing the way we use the index on $\boldsymbol{X}_{i}$

Could have had $\mathrm{E}\left(h_{j}(\boldsymbol{X})\right)=\mu_{j}$
but this is not the case in question In antithetic sampling

## Antithetic sampling-theoretical derivations

First: dimension 1

| $\left[h_{1}(X)-h_{1}(Y)\right]\left[h_{2}(X)-h_{2}(Y)\right]$ | $\geq 0$ |
| ---: | :--- |
|  | $\Downarrow$ |
| $E\left[\left[h_{1}(X)-h_{1}(Y)\right]\left[h_{2}(X)-h_{2}(Y)\right]\right]$ | Same sign |
|  | $\geq 0$ |
|  | For any $X$ and $Y$ |
| $E\left[h_{1}(X)-\mu-\left(h_{1}(Y)-\mu\right)\right]\left[h_{2}(X)-\mu-\left(h_{2}(Y)-\mu\right)\right]$ | $\geq 0$ |
|  | $\Downarrow$ |
|  | Assuming $X, Y$ ind |
|  | $\operatorname{cov}\left[h_{1}(X), h_{2}(X)\right]+\operatorname{cov}\left[h_{1}(Y), h_{2}(Y)\right] \geq 0$ |
|  | $\Downarrow$ |
| Select joint <br> distribution of <br> $X$ and $Y$ to <br> suit us | Assuming $X, Y$ iid |

X and Y is selected to have the same distribution as $\mathrm{X}_{i}$ and $X$ and $Y$ are selected to be independent

## Antithetic sampling-theoretical derivations

- Practical application in dimension 1
- If $h_{1}$ increasing, $h_{2}$ decreasing:

$$
\operatorname{cor}\left[h_{1}(X), h_{2}(X)\right]=-\operatorname{cor}\left[h_{1}(X),-h_{2}(X)\right] \leq 0
$$

- If $X$ uniform: Then choose $h_{1}(X)=h(X), h_{2}(X)=h(1-X)$

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{2}\left(h_{1}(X)+h_{2}(X)\right)\right] & =\frac{1}{4} \operatorname{Var}\left[h_{1}(X)\right]+\frac{1}{4} \operatorname{Var}\left[h_{2}(X)\right]+\frac{1}{2} \operatorname{Cov}\left[h_{1}(X), h_{2}(X)\right] \\
& \leq \frac{1}{2} \operatorname{Var}\left[h_{1}(X)\right]
\end{aligned}
$$

- If $X$ Gaussian: Then choose $h_{1}(X)=h(X), h_{2}(X)=h(-X)$

Works the same way, since: $\Phi(\cdot)$ is monotone and

$$
\Phi(x)=u \Leftrightarrow \Phi(-x)=1-u
$$

## Warm up computations

$E\left[h_{j}(\mathbf{X}) \mid X_{m}\right]=\tilde{h}_{j}\left(X_{m}\right) \quad$ is an increasing function in $X_{m}$.
For any ( $x_{1}, x_{2}, \ldots, x_{m-1}$ ), we have that

$$
h_{j}\left(x_{1}, \ldots, x_{m-1}, x_{m}\right) \geq h_{j}\left(x_{1}, \ldots, x_{m-1}, x_{m}-h\right), \text { for } h>0
$$

$E\left\{h_{j}\left(X_{1}, \ldots, X_{m-1}, x_{m}\right)\right\} \geq E\left\{h_{j}\left(X_{1}, \ldots, X_{m-1}, x_{m}-h\right)\right\}$ for $h>0$

The relation is valid for any distribution, we select: $f\left(\boldsymbol{x} \mid x_{m}\right)$ which gives the result

- $\left(E\left[\tilde{h}_{j}\left(X_{m}\right)\right]=E\left[E\left[h_{j}(\mathbf{X}) \mid X_{m}\right]\right]=E\left[h_{j}(\mathbf{X})\right]=\mu\right)$
law of:
Total Expectation

Det matematisk-naturvitenskapelige fakultet

- Assume $\operatorname{cor}\left[h_{1}(\mathbf{X}), h_{2}(\mathbf{X})\right] \geq 0$ for $\mathbf{X}(m-1)$ dimensional. Then

$$
\operatorname{cov}\left[h_{1}(\mathbf{X}), h_{2}(\mathbf{X}) \mid X_{m}\right] \geq 0
$$

Use result for $m-1$ for $f\left(\boldsymbol{x} \mid x_{m}\right)$
Taking expectations gives

$$
\begin{aligned}
& 0 \leq E\left[\operatorname{cov}\left[h_{1}(\mathbf{X}), h_{2}(\mathbf{X}) \mid X_{m}\right]\right. \\
& =E\left[E\left[h_{1}(\mathbf{X}) h_{2}(\mathbf{X}) \mid X_{m}\right]\right]-E\left[E\left[h_{1}(\mathbf{X}) \mid X_{m}\right] \cdot E\left[h_{2}(\mathbf{X}) \mid X_{m}\right]\right] \\
& E\left[E\left[h_{1}(\mathbf{X}) \mid X_{m}\right] \cdot E\left[h_{2}(\mathbf{X}) \mid X_{m}\right]\right] \\
& \text { Use result for } 1 \text { dimension } \\
& =E\left[\tilde{h}_{1}\left(X_{m}\right) \tilde{h}_{2}\left(X_{m}\right)\right] \\
& =\operatorname{cov}\left[\tilde{h}_{1}\left(X_{m}\right) \tilde{h}_{2}\left(X_{m}\right)\right]+E\left[\tilde{h}_{1}\left(X_{m}\right)\right] E\left[\tilde{h}_{2}\left(X_{m}\right)\right] \\
& \geq E\left[\tilde{h}_{1}\left(X_{m}\right)\right] E\left[\tilde{h}_{2}\left(X_{m}\right)\right]=\mu^{2}
\end{aligned}
$$

which gives

$$
0 \leq E\left[h_{1}(\mathbf{X}) h_{2}(\mathbf{X})\right]-\mu^{2}=\operatorname{cov}\left[h_{1}(\mathbf{X}), h_{2}(\mathbf{X})\right]
$$

## UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## Example

```
set.seed(231171)
```

$\mathrm{N}=2 \mathrm{e} 5$
$\mathrm{x}=\mathrm{rnorm}(\mathrm{N})$
$\mathrm{N} 2=\mathrm{N} / 2$
$\mathrm{x} 1=\mathrm{x}[1: \mathrm{N} 2]$
$\mathrm{x} 12=\operatorname{matrix}(\mathrm{t}(\operatorname{cbind}(\mathrm{x} 1,-\mathrm{x} 1)), 1, \mathrm{~N})$
plot $(1: N$, cumsum $(h(x)) /(1: N)$, type='1 ', col='red"
lines $(1: N$, cumsum $(h(x 12)) /(1: N)$, col='blue')


Det matematisk-naturvitenskapelige fakultet

## Questions

