

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 Variance reduction

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Additional reference person

• <u>liliana.vazquezfernandez@fhi.no</u> (or shorter version: <u>livf@fhi.no</u>).

Det matematisk-naturvitenskapelige fakultet

Today

- Variance reduction
- SMC- retake

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Monte Carlo methods

• Aim (following notation from book):

$$\mu = E^{f(\mathbf{X})}[h(\mathbf{X})] = \begin{cases} \int_{\mathbf{x}} h(\mathbf{x})f(\mathbf{x}) d\mathbf{x} & \mathbf{x} \text{ continuous} \\ \sum_{\mathbf{x}} h(\mathbf{x})f(\mathbf{x}) & \mathbf{x} \text{ discrete} \end{cases}$$

- Monte Carlo:
 - **1** Simulate $\mathbf{X}_i \sim f(\mathbf{x}), i = 1, ..., n$
 - 2 Approximate μ by

$$\hat{\mu}_{MC} = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}_i)$$

- Properties:

 - Unbiased E[μ̂_{MC}] = μ
 If X₁, ..., X_n are independent

 - Variance: var[µ̂_{MC}] = 1/n var[h(X)]
 Consistent: µ̂_{MC} → µ as n → ∞ if var[h(X)] < ∞
 - Estimate of variance:

$$\widehat{\operatorname{var}}[\hat{\mu}_{MC}] = \frac{1}{n-1} \sum_{i=1}^{n} (h(\mathbf{x}_i) - \hat{\mu}_{MC})^2$$

Can we do better than this?

Det matematisk-naturvitenskapelige fakultet

Recap

- Exact methods
 - Inversion/transformation methods
 - Rejection sampling
- Approximate methods
 - Sampling importance resampling
 - Sequential Monte Carlo
 - Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
 - Importance sampling
 - Antithetic sampling
 - Control variates
 - Rao-blackwellization
 - Common random numbers

Det matematisk-naturvitenskapelige fakultet

Variance Reduction

For importance sampling we have seen two options:

$$\mu = \int h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = \int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x} = \frac{\int \frac{h(\mathbf{x}) f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}}{\int \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}}$$

- Assume $X_1, ..., X_n$ iid from $g(\mathbf{x})$.
- Two alternative estimates

$$\hat{\mu}_{IS}^{*} = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{X}_{i}) w^{*}(\mathbf{X}_{i}), \quad w^{*}(X_{i}) = \frac{f(\mathbf{X}_{i})}{g(\mathbf{X}_{i})}$$
$$\hat{\mu}_{IS} = \sum_{i=1}^{n} h(\mathbf{X}_{i}) w(\mathbf{X}_{i}), \quad w(\mathbf{X}_{i}) = \frac{w^{*}(\mathbf{X}_{i})}{\sum_{j=1}^{n} w^{*}(\mathbf{X}_{j})}$$

- $w^*(\mathbf{X}_i)$ called importance weights
- $w(\mathbf{X}_i)$ called the normalized importance weights

Det matematisk-naturvitenskapelige fakultet

We should use normalized importance weight if:

$$cov[t(\mathbf{X}), w^{*}(\mathbf{X})] > \frac{\mu var[w^{*}(\mathbf{X})]}{2}$$

$$cor[t(\mathbf{X}), w^{*}(\mathbf{X})] > \frac{\sqrt{var[w^{*}(\mathbf{X})]}}{2\sqrt{var[t(\mathbf{X})]}/\mu} = \frac{cv[w^{*}(\mathbf{X})]}{2cv[t(\mathbf{X})]}$$

• Example: imp_samp_beta.R

• Taylor approximation of
$$1/\bar{w}^*$$
 around 1:
 $\frac{1}{\bar{w}^*} \approx 1 - (\bar{w}^* - 1) + (\bar{w}^* - 1)^2$

 $t(\mathbf{X}_i) = h(\mathbf{X}_i) w^*(\mathbf{X}_i)$

Det matematisk-naturvitenskapelige fakultet

Imp_sam_beta.R

- Sample: uniform(0,1)
- Target: beta(2,3)
- Estimate mean

(

$$\operatorname{cor}[t(\mathbf{X}), w^{*}(\mathbf{X})] > \frac{\sqrt{\operatorname{var}[w^{*}(\mathbf{X})]}}{2\sqrt{\operatorname{var}[t(\mathbf{X})]}/\mu} = \frac{\operatorname{cv}[w^{*}(\mathbf{X})]}{2\operatorname{cv}[t(\mathbf{X})]}$$

$$0.7120781 > \frac{0.6043563}{2*0.6547519} = 0.4615155$$

Bootstrapping to get uncertainty: Estimate SD RMSE mu.hat.star 0.399958 0.008107 0.008103 mu.hat 0.399971 0.006126 0.006123

Det matematisk-naturvitenskapelige fakultet

Control variates

- Of interest $\mu = E[h(\mathbf{X})]$
- $\theta = E[c(\mathbf{Y})]$ known
- (\mathbf{X}, \mathbf{Y}) correlated (often $\mathbf{Y} = \mathbf{X}$)
- {(**X**_{*i*}, **Y**_{*i*}), *i* = 1, ..., *N*} iid pairs
- Possible alternative estimate

$$\hat{\mu}_{CV} = \hat{\mu}_{MC} + \lambda (\hat{\theta}_{MC} - |\theta]$$
$$\hat{\mu}_{MC} = N^{-1} \sum_{i=1}^{N} h(\mathbf{X}_i)$$
$$\hat{\theta}_{MC} = N^{-1} \sum_{i=1}^{N} c(\mathbf{Y}_i)$$

• Properties:

$$E[\hat{\mu}_{CV}] = \mu$$
$$var[\hat{\mu}_{CV}] = var[\hat{\mu}_{MC}] + \lambda^2 var[\hat{\theta}_{MC}] + 2\lambda cov[\hat{\mu}_{MC}, \hat{\theta}_{MC}]$$

Can choose λ to minimize this:

$$\lambda = -rac{ ext{cov}[\hat{\mu}_{MC}, \hat{ heta}_{MC}]}{ ext{var}[\hat{ heta}_{MC}]}$$

Det matematisk-naturvitenskapelige fakultet

Importance sampling

Importance sampling:

- $\mu = E^{f}[h(|\mathbf{X})] = E^{g}[w^{*}(\mathbf{X})h(\mathbf{X})]$ with $w^{*}(\mathbf{x}) = f(\mathbf{x})/g(\mathbf{x})$
- We known $\theta = E[w^*(\mathbf{X})] = 1$

Possible alternative estimate

$$\hat{\mu}_{ISCV} = \hat{\mu}_{IS}^* + \lambda(ar{w}^* - 1)$$
 $\lambda = -rac{\operatorname{cov}[\hat{\mu}_{MC}, \theta_{MC}]}{\operatorname{var}[\hat{\theta}_{MC}]}$

Imp_sam_beta.R $\lambda = -0.3110773$

	Estimate	SD	RMSE
mu.hat.star	0.400116	0.008029	0.008026
mu.hat	0.400106	0.005725	0.005723
mu.hat.cv	0.400083	0.005466	0.005464

Improvement also for:

$$\lambda = -0.25 \rightarrow 0.005587$$

$$\lambda = -0.40 \rightarrow 0.005719$$
In example:
Robust towards
estimation of λ

Det matematisk-naturvitenskapelige fakultet

Questions

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Rao-Blackwellization

- Of interest $\mu = E[h(\mathbf{X})]$
- Assume $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ and $E[h(\mathbf{X})|\mathbf{X}_2]$ is known.
- Alternative estimate

$$\hat{\mu}_{RB} = N^{-1} \sum_{i=1}^{N} E[h(\mathbf{X}) | \mathbf{X}_2 = \mathbf{x}_{i2}]$$

• Properties:

$$E[\hat{\mu}_{RB}] = E[E[h(\mathbf{X})|\mathbf{X}_2]] = E[h(\mathbf{X})] = \mu$$

law of: Total Expectation

Note

 $\operatorname{var}[h(\mathbf{X}_i)] = E[\operatorname{var}[h(\mathbf{X}_i)|\mathbf{X}_2]] + \operatorname{var}[E[h(\mathbf{X})|\mathbf{X}_2]] \ge \operatorname{var}[E[h(\mathbf{X})|\mathbf{X}_2]]$

implying

 $\operatorname{var}[\hat{\mu}_{MC}] \geq \operatorname{var}[\hat{\mu}_{RB}]$

law of: Total Variance

Det matematisk-naturvitenskapelige fakultet

Example 1

Model

$$\sigma \sim \text{Unif}[0, 2]$$
$$X|\sigma \sim N(0, \sigma)$$
$$E[X] = E[E[X|\sigma]] = E[0] = 0$$

• What is
$$\tau = \text{Var}[X] = E[X^2]$$
?

- Direct MC:
 - Simulate $X_1, ..., X_N$ from model
 - $\hat{\tau}_{MC} = \frac{1}{N} \sum_{i=1}^{N} X_i^2$
- Rao-Blackwellization:
 - $E[X^2|\sigma^2] = \sigma^2$
 - Simulate $\sigma_1, ..., \sigma_N \sim \text{Unif}[0, 2]$

•
$$\hat{\tau}_{RB} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^2$$

- Example_RB.R
- Analytically: $\tau = Var[X] = E[X^2] = 8/6 = 1.333$

	Estimate	SD
Direct	1.32951	0.008805905
RB	1.33198	0.003777348

Det matematisk-naturvitenskapelige fakultet

Example 2 (spatial statistics)

• Spatial dependency:

$$E\{z(x)\} = 0$$

$$\operatorname{cov}(z(x), z(x+h)) = \rho^{h}$$

$$\rho \sim \operatorname{unif}[0.85, 0.95]$$

• What is: $E\{z(x)|z(0) = 1\}$?

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet

Questions

Det matematisk-naturvitenskapelige fakultet

Antithetic sampling

Things that are **antithetic** to one another contradict or oppose each other.

- Assume available $\hat{\mu}_1$ and $\hat{\mu}_2$, identically distributed with $var[\hat{\mu}_j] = \sigma^2/n$
- Assume $\operatorname{cov}[\hat{\mu}_1, \hat{\mu}_2] < 0.$
- Define $\hat{\mu}_{AS} = \frac{1}{2}(\hat{\mu}_1 + \hat{\mu}_2)$

$$\operatorname{var}[\hat{\mu}_{AS}] = \frac{1}{4} (\operatorname{var}[\hat{\mu}_{1}] + \operatorname{var}[\hat{\mu}_{2}]) + \frac{1}{2} \operatorname{cov}[\hat{\mu}_{1}, \hat{\mu}_{2}] \\= \frac{(1+\rho)\sigma^{2}}{2n}$$

where $\rho = \operatorname{cor}[\hat{\mu}_1, \hat{\mu}_2]$.

• Gain by including $\hat{\mu}_2$ a factor of $\frac{1+\rho}{2}$!

Possible to construct such $\hat{\mu}_1$, $\hat{\mu}_2$?

Det matematisk-naturvitenskapelige fakultet

Antithetic sampling

- Main idea: Most simulation procedures for generating X ~ f(x) is based on some transformation X = h(U) where U = (U₁, ..., U_m) are iid uniform variables
- If U_j is uniform[0,1], then also $1 U_j$ is uniform[0,1]
- $h(\mathbf{U})$ and $h(\mathbf{1} \mathbf{U})$ will typically have negative correlation.
- Choose $\mathbf{X}_i = h(\mathbf{U}_i), \, \mathbf{Y}_i = h(\mathbf{1} \mathbf{U}_i)$

$$\hat{\mu}_1 = n^{-1} \sum_{i=1}^n h(\mathbf{U}_i)$$

 $\hat{\mu}_2 = n^{-1} \sum_{i=1}^n h(\mathbf{1} - \mathbf{U}_i)$

- Can be generalized to other settings as well.
- The following slides:
 - Proof of cor[$h(\mathbf{U}_i)$, $h(\mathbf{1} \mathbf{U}_i)$] \leq 0 for *h* monotone function in each U_i .

Det matematisk-naturvitenskapelige fakultet

Antithetic sampling-theoretical derivations

• Assume
$$\mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_n)$$
 iid sample

- Assume $\hat{\mu}_j = n^{-1} \sum_{i=1}^n h_j(\mathbf{x}_i)$ with $E[h_j(\mathbf{x}_i)] = \mu$.
- Assume $h_j(\mathbf{X}_i)$ is increasing in each argument
- Result: cor[$h_1(\mathbf{X}_i)$, $h_2(\mathbf{X}_i)$] ≥ 0 .

If $h_1(\mathbf{x})$, $h_2(\mathbf{x})$ is non decreasing in each argument $\mathbf{x} = (x_1, \dots, x_m)$ $h_j(\mathbf{x}) > h_j(\mathbf{x} - \mathbf{h})$, for all \mathbf{h} such that $h_i > 0, i = 1, \dots, m$ then $\operatorname{cor}(h_1(\mathbf{X}_i), h_2(\mathbf{X}_i)) \ge 0$

Proof by induction on dimension:

- 1) Prove that it is true in dimension 1
- 2) Prove that if it is true for dimension m 1then it is true for dimension m

Note slightly confusing the way we use the index on X_i

Could have had $E(h_j(X)) = \mu_j$ but this is not the case in question In antithetic sampling

d

Det matematisk-naturvitenskapelige fakultet

Antithetic sampling-theoretical derivations

First: dimension 1

X and Y is selected to have the same distribution as X_i and X and Y are selected to be independent

Det matematisk-naturvitenskapelige fakultet

Antithetic sampling-theoretical derivations

- Practical application in dimension 1
 - If h_1 increasing, h_2 decreasing:

 $cor[h_1(X), h_2(X)] = -cor[h_1(X), -h_2(X)] \le 0$

• If X uniform: Then choose $h_1(X) = h(X)$, $h_2(X) = h(1 - X)$

 $Var[\frac{1}{2}(h_1(X) + h_2(X))] = \frac{1}{4}Var[h_1(X)] + \frac{1}{4}Var[h_2(X)] + \frac{1}{2}Cov[h_1(X), h_2(X)]$ $\leq \frac{1}{2}Var[h_1(X)]$

• If X Gaussian: Then choose $h_1(X) = h(X)$, $h_2|(X) = h(-X)$ Works the same way, since: $\Phi(\cdot)$ is monotone and $\Phi(x) = u \Leftrightarrow \Phi(-x) = 1 - u$ Det matematisk-naturvitenskapelige fakultet

Warm up computations

 $h_j(\mathbf{X}_i)$ is increasing in each argument

 $E[h_j(\mathbf{X})|X_m] = \tilde{h}_j(X_m)$ is an increasing function in X_m .

For any $(x_1, x_2, \dots, x_{m-1})$, we have that

$$h_j(x_1, \dots, x_{m-1}, x_m) \ge h_j(x_1, \dots, x_{m-1}, x_m - h), \text{ for } h > 0$$

$$E\{h_j(X_1, \dots, X_{m-1}, x_m)\} \ge E\{h_j(X_1, \dots, X_{m-1}, x_m - h)\} \text{ for } h > 0$$

The relation is valid for any distribution, we select: $f(x|x_m)$ which gives the result

•
$$(E[\tilde{h}_j(X_m)] = E[E[h_j(\mathbf{X})|X_m]] = E[h_j(\mathbf{X})] = \mu)$$

law of: Total Expectation

Det matematisk-naturvitenskapelige fakultet

• Assume cor[$h_1(\mathbf{X}), h_2(\mathbf{X})$] ≥ 0 for $\mathbf{X} (m-1)$ dimensional. Then

 $\operatorname{cov}[h_1(\mathbf{X}),h_2(\mathbf{X})|X_m]\geq 0$

Use result for m - 1 for $f(\mathbf{x}|\mathbf{x}_m)$

Taking expectations gives

which gives

$$0 \leq E[h_1(\mathbf{X})h_2(\mathbf{X})] - \mu^2 = \operatorname{cov}[h_1(\mathbf{X}), h_2(\mathbf{X})]$$

Det matematisk-naturvitenskapelige fakultet

Example

- $\mu = E[x/(2^x 1)]$ for $x \sim N(0, 1)$
- Note: $x \sim N(0, 1)$ imply $-x \sim N(0, 1)$

set.seed(231171)
N = 2e5
x = rnorm(N)
N2 = N/2
x1 = x[1:N2]
x12=matrix(t(cbind(x1,-x1)), 1,N)

• Example_6_10.R

 $\label{eq:plot(1:N, cumsum(h(x))/(1:N),type='l',col='red' lines(1:N, cumsum(h(x12))/(1:N) , col='blue')$

Det matematisk-naturvitenskapelige fakultet

Questions