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Last time variance reduction

• Beating:   
Var ℎ 𝑋

𝑛

• Antithetic sampling

– Random numbers that 

have negative correlation

• Exercise: Common random numbers

– Creating a paired test rather than 

a two sample distribution  (when appropriate)

• Importance sampling 

– Normalized weights vs un-normalized

• Control variates

– We know something about the distribution

• Rao-Blacwellization

– We know something about a conditional distribution

– Particular useful with hyper parameters



Today
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Graphing the probability distribution
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛

𝑦1 𝑦2 𝑦3 𝑦4 𝑦𝑛⋯

⋯

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛
⋯

𝑓 𝒙 = 𝑓 𝑥1 𝑓 𝑥2 𝑥1 𝑓 𝑥3 𝑥2 ⋯𝑓 𝑥𝑛 𝑥𝑛−1

𝑓 𝒙, 𝒚 = 𝑓 𝑥1 𝑓(𝑦1|𝑥1)𝑓 𝑥2 𝑥1 𝑓 𝑦2 𝑥2 ⋯𝑓 𝑥𝑛 𝑥𝑛−1 𝑓(𝑦𝑛|𝑥𝑛)

The way I use it is to highlight the dependency 

structure in a statistical model model, i.e. the joint didtribution 



In a hidden Markov model
• The way I understand this is that the y’s are observed 

and that the x’s are hidden (unknown)

• What do we mean by saying that the 𝑥𝑖, shadows for 𝑦𝑖?

– We mean this in the sense of conditional distributions 
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑛

𝑦1 𝑦2 𝑦3 𝑦4 𝑦𝑛⋯

⋯

𝑓 𝑥2 𝑥1, 𝑦1 = 𝑓(𝑥2|𝑥1)

In the graph the only way information from 𝑦1 may get to 𝑥2 is 

through its influence on 𝑥1, thus if we know the value of 𝑥1 , then 

there is no additional effect of 𝑦1 on 𝑥2

When 𝑥1 shadows for 𝑦1 (wrt 𝑥2 ) we have:



About SCM

• In the lecture about SMC recap slide 17. We want to 

compute 𝑝 𝒚𝑠 𝒚1:(𝑠−1), 𝜃).   

We do this by integrating out 𝑥𝑠,  but these variables are 

hidden, i.e. Data we do not have. How can we do that?

• We do not know the distribution 𝑝 𝒚|𝜃

• We know joint distribution of 𝑝 𝒙, 𝒚|𝜃

– So we know something about the x’s (but not the value)

• Since we have not observed the 𝒙’s we need to get rid of it, 

i.e. integrating it out.
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𝑝 𝒚|𝜃 = න𝑝 𝒙, 𝒚|𝜃 𝑑𝒙



What is a "sufficient statistic"?

• A statistic is a function of the data, i.e. 𝑆(𝑿).

– e.g.    
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

• Given a model with parameters, a set of 

statistics is said to be sufficient  for a 

parameter 𝜃 if the distribution of data 𝑿
conditioned to the statistics S(𝑿) do not 

depend on the parameter, 𝜃.

– e.g. 𝐸(𝑋𝑗) = 𝜇 vs  𝐸(𝑋𝑗|
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 ) =

1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

𝐸 𝑋𝑗
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 = 𝑎 ) = 𝑎
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For the normal distibution



Sufficient statistic in stk 4051

• EM in exponential family

– Exponential family is linked to sufficient statistics

– When we precompute properties the sufficient 

statistics comes into play

• SCM parameter estimation (Bayesian)

– The sufficient statistics lets us decouple the

parameter and the data 

– 𝑝 𝒙, 𝒔, 𝜽 = 𝑝 𝒙 𝒔 𝑝 𝒔 𝜽 𝑝(𝜽)

9



EM in exponential family
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The distribution of the data y given 

the sufficient statistic s and parameter 𝜃
does not depend on

the parameter 𝜃



Sufficient statistics for parameter 

estimation in SCM

• The distribution of data 𝑿 conditioned to the 

statistics S(𝑿) do not depend on the 

parameter, 𝜃.

• 𝑝 𝒙, 𝒔, 𝜽 = 𝑝 𝒙 𝒔 𝑝 𝒔 𝜽 𝑝(𝜽)

• Which gives:

• We also have 
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𝑝 𝜽 𝒙, 𝒔 = 𝑝 𝜽 𝒔

𝜃 𝑠 x

𝑝 𝒔 𝒙, 𝜽 = 𝑝 𝒔 𝒙 = 𝜹(𝒔 = 𝑺 𝒙 )



Questions

• Then we continiue on the topic of today

12



Markov chain Monte Carlo

• Previously we computed weights to correct the 

distribution (or used rejection sampling)

• Now we will create a sequence of samples which 

will converge to samples from the correct distribution
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑡
⋯ 𝑥𝑡+1

⋯

𝑝(𝑥𝑡+1|𝑥𝑡)𝑝(𝑥2|𝑥1)

𝑝(𝑥1) 𝑝(𝑥2) ⋯

⋯

𝑝(𝑥𝑡) 𝑝(𝑥𝑡+1) 𝑝 𝑥𝑡 → 𝑓(𝑥)



Markov chain Monte Carlo  (McMC)
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Why?

We had problems with weight decay and degeneracy in the 

direct approach now we can iterate to improve results



Markov chain theory – discrete case 
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Limit distribution

Stationary distribution

(fix point)



Discrete Transition probability

• Need initial distribution 𝑝(𝑥1), say we have 4 possible classes

• and transition probability 𝑝(𝑥𝑡|𝑥𝑡−1), we need a transition to each state
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑡
⋯ 𝑥𝑡+1

⋯

𝑝(𝑥𝑡+1|𝑥𝑡)𝑝(𝑥2|𝑥1)

𝑝(𝑥1) 𝑝(𝑥2) ⋯

⋯

𝑝(𝑥𝑡) 𝑝(𝑥𝑡+1) 𝑝 𝑥𝑡 → 𝑓(𝑥)

𝑥1 𝑝(𝑥1) 1 2 3 4

1 0.4 𝑝(𝑥2|𝑥1 = 1) 0.80 0.10 0.00 0.10

2 0.1 𝑝(𝑥2|𝑥1 = 2) 0.05 0.90 0.05 0.00

3 0.1 𝑝(𝑥2|𝑥1 = 3) 0.00 0.05 0.90 0.05

4 0.4 𝑝(𝑥2|𝑥1 = 4) 0.10 0.00 0.10 0.80

𝑥2

𝑃 =𝑝0 =



𝑝(𝑥20)

0.17

0.33

0.33

0.17

𝑝0𝑃
19𝑝0𝑃 𝑝0𝑃

7𝑝0

𝑝0𝑃𝑝0

𝑝0

… …



Irreducible/ aperiodic:
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Recurrent (OK  if finite and irreducible)

• Problem if countable many discrete classes
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𝑃(𝑥𝑡|𝑥𝑡−1) = ቐ

0.6 𝑥 = 𝑥𝑡−1
0.3 𝑥 = 𝑥𝑡−1 + 1
0.1 𝑥 = 𝑥𝑡−1 − 1

No return 



Limiting distribution
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When the Markov chain is

irreducible / aperiodic /recurrent

• The limiting distribution is equal to the 

stationary distribution

• Stationary distribution is fix point of iteration

𝑝𝑠𝑃 = 𝑝𝑠
• Limiting distribution (is independent of 𝑝0 )
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lim
𝑛→∞

𝑝0𝑃
𝑛 = 𝑝Lim

𝑝𝑠 = 𝑝Lim



Time to reach limiting distribution n=20 
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Time to reach limiting distribution n=100 
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Time to reach limiting distribution n=250 



Markov chain theory – discrete case 
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Markov chain theory - general setting

26



Example of a continuous transition 

density, AR1 model
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𝑝(𝑥𝑡|𝑥𝑡−1) = 𝜙 𝑎𝑥𝑡−1, 𝜎
2(1 − 𝑎2)

𝑝(𝑥1)

𝑝(𝑥1)

𝑝(𝑥1)



Questions
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We want to construct  P(x|y) to match our needs

• Need to have good properties

– Stationary

– Irreducible 

– Aperiodic

– Recurrent

• Also need to get our target as a stationary 

distribution

– Simplify the hunt by introducing symmertry

– detailed balance
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Detailed balance
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Metropolis-Hastings algorithm
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Either we keep x with a certain probability

Or we change to X* which have a certain density



Metropolis-Hastings algorithm

Detailed balance
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The probability of  a value being 

repeated is positive

Pf:
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න

𝑦≠x

𝑃 𝑦 𝑥 𝑑𝑦 = න

𝑦≠x

𝑔 𝑦 𝑥 min 1,
𝑓 𝑦 𝑔(𝑥|𝑦)

𝑓 𝑥 𝑔(𝑦|𝑥)
𝑑𝑦 ≤ 1

𝑃 𝑦 𝑥 = 𝑔 𝑦 𝑥 min 1,
𝑓 𝑦 𝑔(𝑥|𝑦)

𝑓 𝑥 𝑔(𝑦|𝑥)

Positive number: 

≤ 1
Density: 

integrates to 1



What about unknown scaling and MH
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Important for Bayesian analysis Posterior ∝ Likelihood × Prior

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝 𝑥

𝑝 𝑦
∝ 𝑝 𝑦 𝑥 𝑝 𝑥

Important for Gibbs type distributions



Questions

35



Metropolis Hastings is a general form:

• Specific chains:

– Random walk chains

– Independent chains

– Gibbs sampler

• Tricks to customize sampling

– Reparametrize

– Block update

– Hybrid

– Griddy Gibbs
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Random walk chains
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Example
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42)



Results random walk
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Acceptance rate
= 0.2755276

Auto correlation

Lag one scatterplot

𝑥𝑡−1

𝑥𝑡



The repeats of a value is needed to get 

the correct distribution
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Compare 

histograms 

to true 

distribution

This is kind of 

similar to what we 

have for sampling 

importance 

resampling (SIR)

If a value is 

repeated it gets 

«more weight»



The effect variance in proposal distribution
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Acc. rate =0.994

Too small steps, 

high acceptance 

high correlation 

𝑔 𝑦 𝑥 = 𝜙(𝑦; 𝑥, 0.042)



N = 10 000

𝑔 𝑦 𝑥 = 𝜙(𝑦; 𝑥, 12)

Acc. Rate = 0.700

Just about right, 

good acceptance 

low correlation ☺

☺

𝑔 𝑦 𝑥 = 𝜙(𝑦; 𝑥, 1002)

Acc. Rate = 0.012

Too large changes proposed, 

low acceptance 

high correlation 









Questions?
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Independent chains
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Challenges similar to what seen in:

• rejection sampling  

• importance  sampling

• sampling importance resampling



Example
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𝑔 𝑦 𝑥 = 𝜙(𝑦; 0, 12)
Example_MH_cubic_independence.R



Results independent
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Acceptance rate= 0.9149915 



The effect variance in proposal distribution
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Acc. rate =0.419

Too narrow proposal, 

good acceptance 

high correlation 

𝑔 𝑦 𝑥 = 𝜙(𝑦; 0, 0.252)



N = 10 000

𝑔 𝑦 𝑥 = 𝜙(𝑦; 0,42)

Acc. Rate = 0.288

Just about right, 

reasonable acceptance 

low correlation ☺

𝑔 𝑦 𝑥 = 𝜙(𝑦; 0, 1002)

Acc. Rate = 0.012

Too large changes proposed, 

low acceptance 

high correlation 



Questions
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M-H and multivariate settings
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Example multivariate with 

single coordinate update
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See also fixed scan in: Example_MH_cubic_multivariate_2.R



Results independent
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Acceptance rate= 0.3053943 



Questions
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