

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 Markov Chain Monte Carlo

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Det matematisk-naturvitenskapelige fakultet

Last time variance reduction

- Beating: $\frac{\operatorname{Var}\{h(X)\}}{n}$
- Antithetic sampling
 - Random numbers that have negative correlation

Define
$$\hat{\mu}_{AS} = \frac{1}{2}(\hat{\mu}_1 + \hat{\mu}_2)$$

 $\operatorname{var}[\hat{\mu}_{AS}] = \frac{1}{4}(\operatorname{var}[\hat{\mu}_1] + \operatorname{var}[\hat{\mu}_2]) + \frac{1}{2}\operatorname{cov}[\hat{\mu}_1, \hat{\mu}_2]$
 $= \frac{(1+\rho)\sigma^2}{2\rho}$

- Exercise: Common random numbers
 - Creating a paired test rather than a two sample distribution (when appropriate)
- Importance sampling
 - Normalized weights vs un-normalized
- Control variates $\hat{\mu}_{CV} = \hat{\mu}_{MC} + \lambda(\hat{\theta}_{MC} \theta)$ $var[\hat{\mu}_{CV}] = var[\hat{\mu}_{MC}] + \lambda^2 var[\hat{\theta}_{MC}] + 2\lambda cov[\hat{\mu}_{MC}, \hat{\theta}_{MC}]$
 - We know something about the distribution
- Rao-Blacwellization
 - We know something about a conditional distribution
 - Particular useful with hyper parameters

 $\operatorname{var}[h(\mathbf{X}_i)] = E[\operatorname{var}[h(\mathbf{X}_i)|\mathbf{X}_2]] + \operatorname{var}[E[h(\mathbf{X})|\mathbf{X}_2]] \ge \operatorname{var}[E[h(\mathbf{X})|\mathbf{X}_2]]$

$$\lambda = -\frac{\text{cov}[\hat{\mu}_{MC}, \hat{\theta}_{MC}]}{\text{var}[\hat{\theta}_{MC}]}$$

Det matematisk-naturvitenskapelige fakultet

Today

- Exact methods
 - Inversion/transformation methods
 - Rejection sampling
- Approximate methods
 - Sampling importance resampling
 - Sequential Monte Carlo
 - Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
 - Importance sampling
 - Antithetic sampling
 - Control variates
 - Rao-blackwellization
 - Common random numbers

UiO **Solution** Matematisk institutt Det matematisk-naturvitenskapelige fakultet

Graphing the probability distribution

The way I use it is to highlight the dependency structure in a statistical model model, i.e. the joint didtribution

 $f(\mathbf{x}, \mathbf{y}) = f(x_1)f(y_1|x_1)f(x_2|x_1)f(y_2|x_2)\cdots f(x_n|x_{n-1})f(y_n|x_n)$

In a hidden Markov model

- The way I understand this is that the y's are observed and that the x's are hidden (unknown)
- What do we mean by saying that the x_i , shadows for y_i ?
 - We mean this in the sense of conditional distributions

When x_1 shadows for y_1 (wrt x_2) we have: $f(x_2|x_1, y_1) = f(x_2|x_1)$

In the graph the only way information from y_1 may get to x_2 is through its influence on x_1 , thus if we know the value of x_1 , then there is no additional effect of y_1 on x_2

About SCM

- In the lecture about SMC recap slide 17. We want to compute p(y_s |y_{1:(s-1)}, θ).
 We do this by integrating out x_s, but these variables are hidden, i.e. Data we do not have. How can we do that?
- We do **not** know the distribution $p(\mathbf{y}|\theta)$
- We know joint distribution of p(x, y|θ)
 So we know something about the x's (but not the value)
- Since we have not observed the x's we need to get rid of it,
 i.e. integrating it out.

$$p(\mathbf{y}|\theta) = \int p(\mathbf{x}, \mathbf{y}|\theta) d\mathbf{x}$$

Det matematisk-naturvitenskapelige fakultet

What is a "sufficient statistic"?

• A statistic is a function of the data, i.e. S(X).

$$- \text{ e.g. } \quad \frac{1}{n} \sum_{i=1}^{n} X_i$$

Given a model with parameters, a set of statistics is said to be sufficient for a parameter θ if the distribution of data X conditioned to the statistics S(X) do not depend on the parameter, θ.

$$- \text{ e.g. } E(X_j) = \mu \quad \text{vs } E(X_j \mid \frac{1}{n} \sum_{i=1}^n X_i) = \frac{1}{n} \sum_{i=1}^n X_i$$

For the normal distibution
$$E(X_j \mid \frac{1}{n} \sum_{i=1}^n X_i = a) = a$$

Sufficient statistic in stk 4051

- EM in exponential family
 - Exponential family is linked to sufficient statistics
 - When we precompute properties the sufficient statistics comes into play
- SCM parameter estimation (Bayesian)
 - The sufficient statistics lets us decouple the parameter and the data
 - $p(\mathbf{x}, \mathbf{s}, \boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{s})p(\mathbf{s}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

Det matematisk-naturvitenskapelige fakultet

EM in exponential family

The Exponential family:

$$f_{\mathcal{Y}}(\mathbf{y}|\boldsymbol{\theta}) = c_1(\mathbf{y})c_2(\boldsymbol{\theta})\exp\{\boldsymbol{\theta}^T\mathbf{s}(\mathbf{y})\}$$

• **s**(**y**) is a sufficient statistic:

$$f_{s}(\boldsymbol{s}|\boldsymbol{\theta}) = \int_{\boldsymbol{y}:\boldsymbol{s}(\boldsymbol{y})=\boldsymbol{s})} f_{\boldsymbol{y}}(\boldsymbol{y}|\boldsymbol{\theta}) d\boldsymbol{y}$$

$$= \int_{\boldsymbol{y}:\boldsymbol{s}(\boldsymbol{y})=\boldsymbol{s})} c_{1}(\boldsymbol{y}) c_{2}(\boldsymbol{\theta}) \exp\{\boldsymbol{\theta}^{T} \boldsymbol{s}(\boldsymbol{y})\} d\boldsymbol{y}$$

$$= c_{2}(\boldsymbol{\theta}) \exp\{\boldsymbol{\theta}^{T} \boldsymbol{s}\} \int_{\boldsymbol{y}:\boldsymbol{s}(\boldsymbol{y})=\boldsymbol{s})} c_{1}(\boldsymbol{y}) d\boldsymbol{y}$$

$$= c_{2}(\boldsymbol{\theta}) \exp\{\boldsymbol{\theta}^{T} \boldsymbol{s}\} g(\boldsymbol{s})$$

$$f(\boldsymbol{y}|\boldsymbol{s};\boldsymbol{\theta}) = \frac{f_{\boldsymbol{y}}(\boldsymbol{y}|\boldsymbol{\theta})}{f_{s}(\boldsymbol{s}|\boldsymbol{\theta})} = \frac{c_{1}(\boldsymbol{y})c_{2}(\boldsymbol{\theta})\exp\{\boldsymbol{\theta}^{T} \boldsymbol{s}\}}{c_{2}(\boldsymbol{\theta})\exp\{\boldsymbol{\theta}^{T} \boldsymbol{s}\}} g(\boldsymbol{s}) = \frac{c_{1}(\boldsymbol{y})}{g(\boldsymbol{s})}$$

Tribution of the data \boldsymbol{y} given does not depend on

The distribution of the data **y** given the sufficient statistic **s** and parameter θ does not depend on the parameter θ

Sufficient statistics for parameter estimation in SCM

- The distribution of data X conditioned to the statistics S(X) do not depend on the parameter, θ.
- $p(\mathbf{x}, \mathbf{s}, \boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{s})p(\mathbf{s}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

• Which gives:

$$p(\boldsymbol{\theta}|\boldsymbol{x}, \boldsymbol{s}) = p(\boldsymbol{\theta}|\boldsymbol{s})$$

We also have

 $p(\boldsymbol{s}|\boldsymbol{x},\boldsymbol{\theta}\,) = p(\boldsymbol{s}|\boldsymbol{x}) = \boldsymbol{\delta}(\boldsymbol{s} = \boldsymbol{S}(\boldsymbol{x}))$

Det matematisk-naturvitenskapelige fakultet

Questions

• Then we continiue on the topic of today

Markov chain Monte Carlo

- Previously we computed weights to correct the distribution (or used rejection sampling)
- Now we will create a sequence of samples which will converge to samples from the correct distribution

Det matematisk-naturvitenskapelige fakultet

Markov chain Monte Carlo (McMC)

- Assume now simulating from $f(\mathbf{X})$ is difficult directly
 - $f(\cdot)$ complicated
 - X high-dimensional
- Markov chain Monte Carlo:
 - Generates $\{\mathbf{X}^{(t)}\}$ sequentially
 - Markov structure: $\mathbf{X}^{(t)} \sim P(\cdot | \mathbf{X}^{(t-1)})$
- Aim now:
 - The distribution of $\mathbf{X}^{(t)}$ converges to $f(\cdot)$ as t increases
 - $\hat{\mu}_{MCMC} = N^{-1} \sum_{t=1}^{N} h(\mathbf{X}^{(t)})$ converges towards $\mu = E^{f}[h(\mathbf{X})]$ as t increases

Why?

We had problems with weight decay and degeneracy in the direct approach now we can iterate to improve results

Det matematisk-naturvitenskapelige fakultet

Markov chain theory – discrete case

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

 $\Pr(X^{(t)} = y | X^{(t-1)} = x) = P(y | x)$

giving the transition probabilities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution f(x) such that

$$\lim_{t \to \infty} \Pr(X^{(t)} = y | X^{(0)} = x) = f(y)$$

$$\hat{\mu}_{MCMC} \to \mu = E^{f}[X]$$
Limit distribution

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(y) = \sum_{x} f(x) \mathcal{P}(y|x)$$

- Our situation: We have f(y), want to find P(y|x)
 - Note: Many possible P(y|x)!

Stationary distribution (fix point)

Det matematisk-naturvitenskapelige fakultet

- Need initial distribution $p(x_1)$, say we have 4 possible classes
- and transition probability $p(x_t|x_{t-1})$, we need a transition to each state

			x_2			
<i>x</i> ₁	$p(x_1)$		1	2	3	4
1	0.4	$p(x_2 x_1=1)$	0.80	0.10	0.00	0.10
2	0.1	$p(x_2 x_1=2)$	0.05	0.90	0.05	0.00
3	0.1	$p(x_2 x_1=3)$	0.00	0.05	0.90	0.05
4	0.4	$p(x_2 x_1 = 4)$	0.10	0.00	0.10	0.80
$p_0 =$			P =			

16

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet

distribution

-50

Det matematisk-naturvitenskapelige fakultet

Recurrent (OK if finite and irreducible)

• Problem if countable many discrete classes

Det matematisk-naturvitenskapelige fakultet

Limiting distribution

When the Markov chain is irreducible / aperiodic /recurrent

• The limiting distribution is equal to the stationary distribution

$$p_s = p_{\text{Lim}}$$

- Stationary distribution is fix point of iteration $p_s P = p_s$
- Limiting distribution (is independent of p_0)

$$\lim_{n \to \infty} p_0 P^n = p_{\text{Lim}}$$

Det matematisk-naturvitenskapelige fakultet

Time to reach limiting distribution n=20

Det matematisk-naturvitenskapelige fakultet

Time to reach limiting distribution n=100

Det matematisk-naturvitenskapelige fakultet

Time to reach limiting distribution n=250

Det matematisk-naturvitenskapelige fakultet

Markov chain theory – discrete case

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$\Pr(X^{(t)} = y | X^{(t-1)} = x) = P(y | x)$$

giving the transition probabilities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution f(x) such that

$$\lim_{t \to \infty} \Pr(X^{(t)} = y | X^{(0)} = x) = f(y)$$
$$\hat{\mu}_{MCMC} \to \mu = E^{f}[X]$$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(y) = \sum_{x} f(x) P(y|x)$$

- Our situation: We have f(y), want to find P(y|x)
 - Note: Many possible P(y|x)!

Det matematisk-naturvitenskapelige fakultet

Markov chain theory - general setting

• Assume $\{\mathbf{X}^{(t)}\}$ is a Markov chain where $\mathbf{X}^{(t)} \in S$

$$\Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{y} \in A} P(\mathbf{y} | \mathbf{x}) d\mathbf{y}$$

giving the transition densities

- Assume the chain is
 - irreducible: It is possible to move from any **x** to any **y** in a finite number of steps
 - reccurent: The chain will visit any $A \subset S$ infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $f(\mathbf{x})$ such that

$$\lim_{t \to \infty} \Pr(\mathbf{X}^{(t)} \in A | \mathbf{X}^{(0)} = \mathbf{x}) = \int_{A} f(\mathbf{y}) d\mathbf{y}$$
$$\hat{\mu}_{MCMC} \to \mu$$

• How to find $f(\cdot)$ (the stationary distribution): Solve

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

• Our situation: We have $f(\cdot)$, want to find $P(\mathbf{y}|\mathbf{x})$

Det matematisk-naturvitenskapelige fakultet

Example of a continuous transition density, AR1 model

 $p(x_t | x_{t-1}) = \phi(a x_{t-1}, \sigma^2(1-a^2))$

Det matematisk-naturvitenskapelige fakultet

Questions

Det matematisk-naturvitenskapelige fakultet

We want to construct P(x|y) to match our needs

- Need to have good properties
 - Stationary
 - Irreducible
 - Aperiodic
 - Recurrent
- Also need to get our target as a stationary distribution $f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y} | \mathbf{x}) d\mathbf{x}$
 - Simplify the hunt by introducing symmetrry
 - detailed balance

Det matematisk-naturvitenskapelige fakultet

Detailed balance

• The task: Find a transition probability/density $P(\mathbf{y}|\mathbf{x})$ satisfying

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

• Sufficient criterion:

 $f(\mathbf{x})P(\mathbf{y}|\mathbf{x}) = f(\mathbf{y})P(\mathbf{x}|\mathbf{y})$ Detailed balance

We then have

$$\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}} f(\mathbf{y}) P(\mathbf{x}|\mathbf{y}) d\mathbf{x}$$
$$= f(\mathbf{y}) \int_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) d\mathbf{x} = f(\mathbf{y})$$

since $P(\mathbf{x}|\mathbf{y})$ is, for any given \mathbf{y} , a density wrt \mathbf{x} .

Note: For y = x, detailed balance always fulfilled, only necessary to check for y ≠ x.

Det matematisk-naturvitenskapelige fakultet

Metropolis-Hastings algorithm

- *P*(**y**|**x**) defined through an algorithm:
 - **(1)** Sample a candidate value \mathbf{X}^* from a proposal distribution $g(\cdot | \mathbf{x})$.
 - Compute the Metropolis-Hastings ratio

$$\mathsf{P}(\mathbf{x}, \mathbf{X}^*) = rac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

O Put

$$\mathbf{Y} = egin{cases} \mathbf{X}^* & ext{with probability min} \{1, R(\mathbf{x}, \mathbf{X}^*)\} \ \mathbf{x} & ext{otherwise} \end{cases}$$

• For $\mathbf{y} \neq \mathbf{x}$:

$$P(\mathbf{y}|\mathbf{x}) = g(\mathbf{y}|\mathbf{x}) \min\left\{1, \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})}
ight\}$$

• Note: $P(\mathbf{x}|\mathbf{x})$ somewhat difficult to evaluate in this case.

Either we keep **x** with a certain probability Or we change to **X*** which have a certain density UiO *** Matematisk institutt** Det matematisk-naturvitenskapelige fakultet

Metropolis-Hastings algorithm Detailed balance

$$\begin{aligned} f(\mathbf{x})P(\mathbf{y}|\mathbf{x}) = f(\mathbf{x})g(\mathbf{y}|\mathbf{x}) \min\left\{1, \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})}\right\} \\ = \min\{f(\mathbf{x})g(\mathbf{y}|\mathbf{x}), f(\mathbf{y})g(\mathbf{x}|\mathbf{y})\} \\ = f(\mathbf{y})g(\mathbf{x}|\mathbf{y}) \min\left\{\frac{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})}{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}, 1\right\} = f(\mathbf{y})P(\mathbf{x}|\mathbf{y}) \end{aligned}$$

UiO *** Matematisk institutt** Det matematisk-naturvitenskapelige fakultet

The probability of a value being repeated is positive

Pf: $P(y|x) = g(y|x)\min\left\{1, \frac{f(y)g(x|y)}{f(x)g(y|x)}\right\}$

$$\int_{y \neq x} P(y|x)dy = \int_{y \neq x} g(y|x) \min \left\{ 1, \frac{f(y)g(x|y)}{f(x)g(y|x)} \right\} dy \le 1$$

Density: Positive number:
integrates to 1 ≤ 1

UiO *** Matematisk institutt** Det matematisk-naturvitenskapelige fakultet

What about unknown scaling and MH

• Assume now $f(\mathbf{x}) = c \cdot q(\mathbf{x})$ with c unknown.

$$R(\mathbf{x}, \mathbf{y}) = \frac{f(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{f(\mathbf{x})g(\mathbf{y}|\mathbf{x})} = \frac{c \cdot q(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{c \cdot q(\mathbf{x})g(\mathbf{y}|\mathbf{x})} = \frac{q(\mathbf{y})g(\mathbf{x}|\mathbf{y})}{q(\mathbf{x})g(\mathbf{y}|\mathbf{x})}$$

Do not depend on c!

Important for Bayesian analysis Posterior \propto Likelihood \times Prior

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} \propto p(y|x)p(x)$$

Important for Gibbs type distributions

$$Pr(\mathbf{C}) = Pr(C_{11}, ..., C_{n_1 n_2})$$
$$= \frac{1}{Z} e^{-\beta \sum_{||(i,j)-(i'j')||=1} l(C_{ij} \neq C_{i'j'})}$$
$$Pr(\mathbf{C}|\mathbf{y}) = \frac{Pr(\mathbf{C}) \prod_{ij} f(y_{ij}|C_{ij})}{\sum_{\mathbf{C}'} Pr(\mathbf{C}') \prod_{ij} f(y_{ij}|C'_{ij})}$$

34

Det matematisk-naturvitenskapelige fakultet

Questions

Det matematisk-naturvitenskapelige fakultet

Metropolis Hastings is a general form:

- Specific chains:
 - Random walk chains
 - Independent chains
 - Gibbs sampler
- Tricks to customize sampling
 - Reparametrize
 - Block update
 - Hybrid
 - Griddy Gibbs

Det matematisk-naturvitenskapelige fakultet

Random walk chains

• Popular choice of proposal distribution:

$$\mathbf{X}^* = \mathbf{x} + \boldsymbol{\varepsilon}$$

•
$$g(\mathbf{x}^*|\mathbf{x}) = h(\mathbf{x}^* - \mathbf{x})$$

- Popular choices: Uniform, Gaussian, t-distribution
- Note: If $h(\cdot)$ is symmetric, $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}|\mathbf{x}^*)$ and

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{f(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{f(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{f(\mathbf{x}^*)}{f(\mathbf{x})}$$

Det matematisk-naturvitenskapelige fakultet

Example

- Assume $f(x) \propto \exp(-|x|^3/3)$
- Proposal distribution $N(x, 4^2)$
- Example_MH_cubic.R

Det matematisk-naturvitenskapelige fakultet

Results random walk

Acceptance rate = 0.2755276

Lag one scatterplot

The repeats of a value is needed to get the correct distribution

Compare histograms to true distribution

This is kind of similar to what we have for sampling importance resampling (SIR) If a value is repeated it gets «more weight»

Det matematisk-naturvitenskapelige fakultet

Questions?

Det matematisk-naturvitenskapelige fakultet

Independent chains

• Assume
$$g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}^*)$$
. Then

$$R(\mathbf{x},\mathbf{x}^*) = \frac{f(\mathbf{x}^*)g(\mathbf{x})}{f(\mathbf{x})g(\mathbf{x}^*)} = \frac{\frac{f(\mathbf{x}^*)}{g(\mathbf{x}^*)}}{\frac{f(\mathbf{x})}{g(\mathbf{x})}},$$

fraction of importance weights!

- Behave very much like importance sampling and SIR
- Difficult to specify $g(\mathbf{x})$ for high-dimensional problems
- Theoretical properties easier to evaluate than for random walk versions.

Challenges similar to what seen in:

- rejection sampling
- importance sampling
- sampling importance resampling

Det matematisk-naturvitenskapelige fakultet

• Assume $f(x) \propto \exp(-|x|^3/3)$ $g(y|x) = \phi(y; 0, 1^2)$ Example MH cubic independence.R

```
# Number of iterations
N = 10000
x = rep(NA,N)
varProp=1^2 # variance of proposal
#Initial value
x = rnorm(1, 0, varProp)
acc = 0
for(i in 2:N)
 y = rnorm(1,0,varProp) # proposal
  R = f(y)*dnorm(x[i-1],0,varProp)/(f(x[i-1])*dnorm(y,0,varProp)) # acceptance ratio
                           # note that the acceptance rate is min(1,R),
 if(runif(1)<R)
                          # The syntax her will give that since we allways accept if R>1
   x[i] = y
    acc = acc+1
  else
   x[i] = x[i-1]
```

Det matematisk-naturvitenskapelige fakultet

Results independent

Acceptance rate= 0.9149915

45

UiO *** Matematisk institutt** Det matematisk-naturvitenskapelige fakultet

The effect variance in proposal distribution

 $N = 10\,000$

Too narrow proposal, good acceptance high correlation ☺ Just about right, reasonable acceptance low correlation © Too large changes proposed, low acceptance 46 high correlation 🛞

Det matematisk-naturvitenskapelige fakultet

Questions

Det matematisk-naturvitenskapelige fakultet

M-H and multivariate settings

• $\mathbf{X} = (X_1, \dots, X_p)$

• Typical in this case: Only change one or a few components at a time.

Choose index j (randomly)

2 Sample
$$X_j^* \sim g_j(\cdot | \mathbf{x})$$
, put $X_k^* = X_k$ for $k \neq j$

Compute

$$R(\mathbf{x}, \mathbf{X}^*) = \frac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

4 Put

$$\mathbf{Y} = egin{cases} \mathbf{X}^* & ext{with probability min} \{1, R(\mathbf{x}, \mathbf{X}^*)\} \ \mathbf{x} & ext{otherwise} \end{cases}$$

- Can show that this version also satisfies detailed balance
- Can even go through indexes systematic
 - Should then consider the whole loop through all components as one iteration

Det matematisk-naturvitenskapelige fakultet

Example multivariate with

single coordinate update

• Assume $f(\mathbf{x}) \propto \exp(-||\mathbf{x}||^3/3) = \exp(-[||\mathbf{x}||^2]^{3/2}/3)$

Proposal distribution

1
$$j \sim \text{Uniform}[1, 2, ..., p]$$

 $x_{j}^{*} \sim N(x_{j}, 1)$

```
Example_MH_cubic_multivariate.R
#Proposal distribution: Gaussian distribution centered at previous value
p = 50
            # Number of iterations
N = 10000
x = matrix(nrow=N,ncol=p)
#Initial value
x[1,] = rnorm(p)
acc = 0
for(i in 2:N)
 j = sample(1:p,1)
 y = x[i-1,]
 y[j] = rnorm(1,x[i-1,j],2)
 R = f(y) * dnorm(x[i-1,j],y[j],1) / (f(x[i-1,j]) * dnorm(y[j],x[i-1,j],1))
 if(runif(1)<R)
   x[i,] = y
    acc = acc+1
  3
  else
  x[i,] = x[i-1,]
```

See also fixed scan in: Example_MH_cubic_multivariate_2.R

Det matematisk-naturvitenskapelige fakultet

Results independent

Acceptance rate= 0.3053943

Det matematisk-naturvitenskapelige fakultet

Questions