

$\mathrm{UiO}:$ Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021

 Markov Chain Monte CarloInstructor: Odd Kolbjørnsen, oddkol@math.uio.no

Last time variance reduction

- Beating: $\frac{\operatorname{Var}\{h(X)\}}{n}$
- Antithetic sampling
- Random numbers that have negative correlation

$$
\begin{aligned}
\text { Define } \hat{\mu}_{A S} & =\frac{1}{2}\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right) \\
\operatorname{var}\left[\hat{\mu}_{A S}\right] & =\frac{1}{4}\left(\operatorname{var}\left[\hat{\mu}_{1}\right]+\operatorname{var}\left[\hat{\mu}_{2}\right]\right)+\frac{1}{2} \operatorname{cov}\left[\hat{\mu}_{1}, \hat{\mu}_{2}\right] \\
& =\frac{(1+\rho))^{2}}{2 n}
\end{aligned}
$$

- Exercise: Common random numbers
- Creating a paired test rather than a two sample distribution (when appropriate)
- Importance sampling
- Normalized weights vs un-normalized
- Control variates $\hat{\mu}_{C V}=\hat{\mu}_{M C}+\lambda\left(\hat{\theta}_{M C}-\theta\right) \operatorname{var}\left[\hat{\mu}_{C V}\right]=\operatorname{var}\left[\hat{\mu}_{M C}\right]+\lambda^{2} \operatorname{var}\left[\hat{\theta}_{M C}\right]+2 \lambda \operatorname{cov}\left[\hat{\mu}_{M C}, \hat{\theta}_{M C}\right]$
- We know something about the distribution
- Rao-Blacwellization

$$
\lambda=-\frac{\operatorname{cov}\left[\hat{\mu}_{M C}, \hat{\theta}_{M C}\right]}{\operatorname{var}\left[\hat{\theta}_{M C}\right]}
$$

- We know something about a conditional distribution
- Particular useful with hyper parameters

$$
\operatorname{var}\left[h\left(\mathbf{X}_{i}\right)\right]=E\left[\operatorname{var}\left[h\left(\mathbf{X}_{i}\right) \mid \mathbf{X}_{2}\right]\right]+\operatorname{var}\left[E\left[h(\mathbf{X}) \mid \mathbf{X}_{2}\right]\right] \geq \operatorname{var}\left[E\left[h(\mathbf{X}) \mid \mathbf{X}_{2}\right]\right.
$$

Today

- Exact methods
- Inversion/transformation methods
- Rejection sampling
- Approximate methods
- Sampling importance resampling
- Sequential Monte Carlo
- Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
- Importance sampling
- Antithetic sampling
- Control variates
- Rao-blackwellization
- Common random numbers

Graphing the probability distribution

The way I use it is to highlight the dependency structure in a statistical model model, i.e. the joint didtribution

$$
f(\boldsymbol{x}, \boldsymbol{y})=f\left(x_{1}\right) f\left(y_{1} \mid x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(y_{2} \mid x_{2}\right) \cdots f\left(x_{n} \mid x_{n-1}\right) f\left(y_{n} \mid x_{n}\right)
$$

In a hidden Markov model

- The way I understand this is that the y's are observed and that the x's are hidden (unknown)
- What do we mean by saying that the x_{i}, shadows for y_{i} ?
- We mean this in the sense of conditional distributions

When x_{1} shadows for y_{1} (wrt x_{2}) we have: $f\left(x_{2} \mid x_{1}, y_{1}\right)=f\left(x_{2} \mid x_{1}\right)$

In the graph the only way information from y_{1} may get to x_{2} is through its influence on x_{1}, thus if we know the value of x_{1}, then there is no additional effect of y_{1} on x_{2}

About SCM

- In the lecture about SMC recap slide 17. We want to compute $p\left(\boldsymbol{y}_{s} \mid \boldsymbol{y}_{1:(s-1)}, \theta\right)$.
We do this by integrating out x_{s}, but these variables are hidden, i.e. Data we do not have. How can we do that?
- We do not know the distribution $p(\boldsymbol{y} \mid \theta)$
- We know joint distribution of $p(\boldsymbol{x}, \boldsymbol{y} \mid \theta)$
- So we know something about the x's (but not the value)
- Since we have not observed the \boldsymbol{x} 's we need to get rid of it, i.e. integrating it out.

$$
p(\boldsymbol{y} \mid \theta)=\int p(\boldsymbol{x}, \boldsymbol{y} \mid \theta) d \boldsymbol{x}
$$

What is a "sufficient statistic"?

- A statistic is a function of the data, i.e. $S(\boldsymbol{X})$.
- e.g. $\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Given a model with parameters, a set of statistics is said to be sufficient for a parameter θ if the distribution of data \boldsymbol{X} conditioned to the statistics $S(\boldsymbol{X})$ do not depend on the parameter, θ.
- e.g. $E\left(X_{j}\right)=\mu$ vs $E\left(X_{j} \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right.\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

For the normal distibution $E\left(X_{j} \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} X_{i}=a\right.\right)=a$

Sufficient statistic in stk 4051

- EM in exponential family
- Exponential family is linked to sufficient statistics
- When we precompute properties the sufficient statistics comes into play
- SCM parameter estimation (Bayesian)
- The sufficient statistics lets us decouple the parameter and the data
- $p(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\theta})=p(\boldsymbol{x} \mid \boldsymbol{s}) p(\boldsymbol{s} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$

EM in exponential family

- The Exponential family:

$$
f_{y}(\mathbf{y} \mid \boldsymbol{\theta})=c_{1}(\mathbf{y}) c_{2}(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{T} \mathbf{s}(\mathbf{y})\right\}
$$

- $\boldsymbol{s}(\boldsymbol{y})$ is a sufficient statistic:

$$
\begin{aligned}
f_{s}(\boldsymbol{s} \mid \boldsymbol{\theta}) & =\int_{\boldsymbol{y}: \boldsymbol{s}(\boldsymbol{y})=\boldsymbol{s})} f_{y}(\mathbf{y} \mid \boldsymbol{\theta}) d \boldsymbol{y} \\
& =\int_{\boldsymbol{y}: \boldsymbol{s}(\boldsymbol{y})=\boldsymbol{s})} c_{1}(\boldsymbol{y}) c_{2}(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{T} \boldsymbol{s}(\mathbf{y})\right\} d \boldsymbol{y} \\
& =c_{2}(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{T} \boldsymbol{s}\right\} \int_{\boldsymbol{y}: \mathbf{s}(\boldsymbol{y})=\boldsymbol{s})} c_{1}(\boldsymbol{y}) d \boldsymbol{y} \\
& =c_{2}(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{T} \boldsymbol{s}\right\} g(\boldsymbol{s})
\end{aligned}
$$

$$
f(\boldsymbol{y} \mid \boldsymbol{s} ; \boldsymbol{\theta})=\frac{f_{y}(\mathbf{y} \mid \boldsymbol{\theta})}{f_{s}(\boldsymbol{s} \mid \boldsymbol{\theta})}=\frac{c_{1}(\mathbf{y}) c_{2}(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{T} \mathbf{s}\right\}}{c_{2}(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{\top} \boldsymbol{s}\right\} g(\boldsymbol{s})}=\frac{c_{1}(\mathbf{y})}{g(\boldsymbol{s})}
$$

The distribution of the data \mathbf{y} given the sufficient statistic sand parameter θ
does not depend on the parameter θ

Sufficient statistics for parameter estimation in SCM

- The distribution of data \boldsymbol{X} conditioned to the statistics $\mathrm{S}(\boldsymbol{X})$ do not depend on the parameter, θ.
- $p(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\theta})=p(\boldsymbol{x} \mid \boldsymbol{s}) p(\boldsymbol{s} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$

- Which gives:

$$
p(\boldsymbol{\theta} \mid \boldsymbol{x}, \boldsymbol{s})=p(\boldsymbol{\theta} \mid \boldsymbol{s})
$$

- We also have

$$
p(\boldsymbol{s} \mid \boldsymbol{x}, \boldsymbol{\theta})=p(\boldsymbol{s} \mid \boldsymbol{x})=\boldsymbol{\delta}(\boldsymbol{s}=\boldsymbol{S}(\boldsymbol{x}))
$$

Det matematisk-naturvitenskapelige fakultet

Questions

- Then we continiue on the topic of today

Markov chain Monte Carlo

- Previously we computed weights to correct the distribution (or used rejection sampling)
- Now we will create a sequence of samples which will converge to samples from the correct distribution

Markov chain Monte Carlo (McMC)

- Assume now simulating from $f(\mathbf{X})$ is difficult directly
- $f(\cdot)$ complicated
- X high-dimensional
- Markov chain Monte Carlo:
- Generates $\left\{\mathbf{X}^{(t)}\right\}$ sequentially
- Markov structure: $\mathbf{X}^{(t)} \sim P\left(\cdot \mid \mathbf{X}^{(t-1)}\right)$
- Aim now:
- The distribution of $\mathbf{X}^{(t)}$ converges to $f(\cdot)$ as t increases
- $\hat{\mu}_{\text {MCMC }}=N^{-1} \sum_{t=1}^{N} h\left(\mathbf{X}^{(t)}\right)$ converges towards $\mu=E^{f}[h(\mathbf{X})]$ as t increases

Why?
We had problems with weight decay and degeneracy in the direct approach now we can iterate to improve results

Det matematisk-naturvitenskapelige fakultet

Markov chain theory - discrete case

- Assume $\left\{X^{(t)}\right\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$
\operatorname{Pr}\left(X^{(t)}=y \mid X^{(t-1)}=x\right)=P(y \mid x)
$$

giving the transition probabilities

- Assume the chain is
- irreducible: It is possible to move from any \mathbf{x} to any \mathbf{y} in a finite number of steps
- reccurent: The chain will visit any state infinitely often.
- aperiodic: Does not go in cycles
- Then there exists a unique distribution $f(x)$ such that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X^{(t)}=y \mid X^{(0)}=x\right) & =f(y) \\
\hat{\mu}_{\text {MCMC }} & \rightarrow \mu=E^{f}[X]
\end{aligned}
$$

- How to find $f(\cdot)$ (the stationary distribution): Solve

$$
f(y)=\sum_{x} f(x) P(y \mid x)
$$

Stationary distribution (fix point)

- Our situation: We have $f(y)$, want to find $P(y \mid x)$
- Note: Many possible $P(y \mid x)$!

Discrete Transition probability

- Need initial distribution $p\left(x_{1}\right)$, say we have 4 possible classes
- and transition probability $p\left(x_{t} \mid x_{t-1}\right)$, we need a transition to each state

	x_{1}							$p\left(x_{1}\right)$		1	2	3	4
1	0.4	$p\left(x_{2} \mid x_{1}=1\right)$	0.80	0.10	0.00	0.10							
	0.1	$p\left(x_{2} \mid x_{1}=2\right)$	0.05	0.90	0.05	0.00							
	0.1	$p\left(x_{2} \mid x_{1}=3\right)$	0.00	0.05	0.90	0.05							
	0.4	$p\left(x_{2} \mid x_{1}=4\right)$	0.10	0.00	0.10	0.80							
$p_{0}=$													

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

UiO : Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Irreducible/ aperiodic:

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Recurrent (OK if finite and irreducible)

- Problem if countable many discrete classes

$$
P\left(x_{t} \mid x_{t-1}\right)= \begin{cases}0.6 & x=x_{t-1} \\ 0.3 & x=x_{t-1}+1 \\ 0.1 & x=x_{t-1}-1\end{cases}
$$

No return

Det matematisk-naturvitenskapelige fakultet

Limiting distribution

When the Markov chain is irreducible / aperiodic /recurrent

- The limiting distribution is equal to the stationary distribution

$$
p_{s}=p_{\text {Lim }}
$$

- Stationary distribution is fix point of iteration

$$
p_{s} P=p_{s}
$$

- Limiting distribution (is independent of p_{0})

$$
\lim _{n \rightarrow \infty} p_{0} P^{n}=p_{\text {Lim }}
$$

Det matematisk-naturvitenskapelige fakultet

Time to reach limiting distribution $\mathbf{n}=\mathbf{2 0}$

Det matematisk-naturvitenskapelige fakultet

Time to reach limiting distribution $\mathrm{n}=100$

Det matematisk-naturvitenskapelige fakultet

Time to reach limiting distribution $\mathbf{n}=\mathbf{2 5 0}$

\square

UiO : Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Markov chain theory - discrete case

- Assume $\left\{X^{(t)}\right\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$
\operatorname{Pr}\left(X^{(t)}=y \mid X^{(t-1)}=x\right)=P(y \mid x)
$$

giving the transition probabilities

- Assume the chain is
- irreducible: It is possible to move from any \mathbf{x} to any \mathbf{y} in a finite number of steps
- reccurent: The chain will visit any state infinitely often.
- aperiodic: Does not go in cycles
- Then there exists a unique distribution $f(x)$ such that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \operatorname{Pr}\left(X^{(t)}=y \mid X^{(0)}=x\right)=f(y) \\
& \hat{\mu}_{\text {MCMC }} \rightarrow \mu=E^{f}[X]
\end{aligned}
$$

- How to find $f(\cdot)$ (the stationary distribution): Solve

$$
f(y)=\sum_{x} f(x) P(y \mid x)
$$

- Our situation: We have $f(y)$, want to find $P(y \mid x)$
- Note: Many possible $P(y \mid x)$!

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Markov chain theory - general setting

- Assume $\left\{\mathbf{X}^{(t)}\right\}$ is a Markov chain where $\mathbf{X}^{(t)} \in S$

$$
\operatorname{Pr}\left(\mathbf{X}^{(t)} \in A \mid \mathbf{X}^{(t-1)}=\mathbf{x}\right)=P(\mathbf{x}, A)=\int_{\mathbf{y} \in A} P(\mathbf{y} \mid \mathbf{x}) d \mathbf{y}
$$

giving the transition densities

- Assume the chain is
- irreducible: It is possible to move from any \mathbf{x} to any \mathbf{y} in a finite number of steps
- reccurent: The chain will visit any $A \subset S$ infinitely often.
- aperiodic: Do not go in cycles
- Then there exists a distribution $f(\mathbf{x})$ such that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(\mathbf{X}^{(t)} \in A \mid \mathbf{X}^{(0)}=\mathbf{x}\right) & =\int_{A} f(\mathbf{y}) d \mathbf{y} \\
\hat{\mu}_{M C M C} & \rightarrow \mu
\end{aligned}
$$

- How to find $f(\cdot)$ (the stationary distribution): Solve

$$
f(\mathbf{y})=\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}
$$

- Our situation: We have $f(\cdot)$, want to find $P(\mathbf{y} \mid \mathbf{x})$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Example of a continuous transition density, AR1 model

$$
p\left(x_{t} \mid x_{t-1}\right)=\phi\left(a x_{t-1}, \sigma^{2}\left(1-a^{2}\right)\right)
$$

Det matematisk-naturvitenskapelige fakultet

Questions

We want to construct $P(x \mid y)$ to match our needs

- Need to have good properties
- Stationary
- Irreducible
- Aperiodic
- Recurrent
- Also need to get our target as a stationary distribution

$$
f(\mathbf{y})=\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}
$$

- Simplify the hunt by introducing symmertry
- detailed balance

Detailed balance

- The task: Find a transition probability/density $P(\mathbf{y} \mid \mathbf{x})$ satisfying

$$
f(\mathbf{y})=\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}
$$

Can in general be a difficult criterion to check

- Sufficient criterion:

$$
f(\mathbf{x}) P(\mathbf{y} \mid \mathbf{x})=f(\mathbf{y}) P(\mathbf{x} \mid \mathbf{y}) \quad \text { Detailed balance }
$$

We then have

$$
\begin{aligned}
\int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y} \mid \mathbf{x}) d \mathbf{x} & =\int_{\mathbf{x}} f(\mathbf{y}) P(\mathbf{x} \mid \mathbf{y}) d \mathbf{x} \\
& =f(\mathbf{y}) \int_{\mathbf{x}} P(\mathbf{x} \mid \mathbf{y}) d \mathbf{x}=f(\mathbf{y})
\end{aligned}
$$

since $P(\mathbf{x} \mid \mathbf{y})$ is, for any given \mathbf{y}, a density wrt \mathbf{x}.

- Note: For $\mathbf{y}=\mathbf{x}$, detailed balance always fulfilled, only necessary to check for $\mathbf{y} \neq \mathbf{x}$.

Metropolis-Hastings algorithm

- $P(\mathbf{y} \mid \mathbf{x})$ defined through an algorithm:
(1) Sample a candidate value \mathbf{X}^{*} from a proposal distribution $g(\cdot \mid \mathbf{x})$.
(2) Compute the Metropolis-Hastings ratio

$$
R\left(\mathbf{x}, \mathbf{X}^{*}\right)=\frac{f\left(\mathbf{X}^{*}\right) g\left(\mathbf{x} \mid \mathbf{X}^{*}\right)}{f(\mathbf{x}) g\left(\mathbf{X}^{*} \mid \mathbf{x}\right)}
$$

(3) Put

$$
\mathbf{Y}= \begin{cases}\mathbf{x}^{*} & \text { with probability } \min \left\{1, R\left(\mathbf{x}, \mathbf{X}^{*}\right)\right\} \\ \mathbf{x} & \text { otherwise }\end{cases}
$$

- For $\mathbf{y} \neq \mathbf{x}$:

$$
P(\mathbf{y} \mid \mathbf{x})=g(\mathbf{y} \mid \mathbf{x}) \min \left\{1, \frac{f(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})}{f(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x})}\right\}
$$

- Note: $P(\mathbf{x} \mid \mathbf{x})$ somewhat difficult to evaluate in this case.

Either we keep \mathbf{x} with a certain probability Or we change to \mathbf{X}^{*} which have a certain density

Metropolis-Hastings algorithm Detailed balance

$$
\begin{aligned}
f(\mathbf{x}) P(\mathbf{y} \mid \mathbf{x}) & =f(\mathbf{x}) g(\mathbf{y} \mid x) \min \left\{1, \frac{f(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})}{f(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x})}\right\} \\
& =\min \{f(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x}), f(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})\} \\
& =f(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y}) \min \left\{\frac{f(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x})}{f(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})}, 1\right\}=f(\mathbf{y}) P(\mathbf{x} \mid \mathbf{y})
\end{aligned}
$$

The probability of a value being repeated is positive

Pf:

$$
\begin{gathered}
P(y \mid x)=g(y \mid x) \min \left\{1, \frac{f(y) g(x \mid y)}{f(x) g(y \mid x)}\right\} \\
\int_{y \neq \mathbf{x}} P(y \mid x) d y=\int_{y \neq \mathbf{x}} \underbrace{\text { Positive number: }}_{\begin{array}{l}
\text { Density: } \\
\text { integrates to } 1
\end{array}} \leq 1, \underbrace{g(y \mid x)}_{1} \sin \frac{f(y) g(x \mid y)}{f(x) g(y \mid x)}\} d y \leq 1
\end{gathered}
$$

What about unknown scaling and MH

- Assume now $f(\mathbf{x})=c \cdot q(\mathbf{x})$ with c unknown.

$$
R(\mathbf{x}, \mathbf{y})=\frac{f(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})}{f(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x})}=\frac{c \cdot q(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})}{c \cdot q(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x})}=\frac{q(\mathbf{y}) g(\mathbf{x} \mid \mathbf{y})}{q(\mathbf{x}) g(\mathbf{y} \mid \mathbf{x})}
$$

- Do not depend on c !

Important for Bayesian analysis Posterior \propto Likelihood \times Prior

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)} \propto p(y \mid x) p(x)
$$

Important for Gibbs type distributions

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{C}) & =\operatorname{Pr}\left(C_{11}, \ldots ., C_{n_{1} n_{2}}\right) \\
& =\frac{1}{Z} e^{-\beta \sum_{\left.\|(i, j)-\left(i^{\prime}\right)^{\prime}\right) \|=1} 1\left(C_{i j} \neq C_{i j^{\prime}}\right)} \\
\operatorname{Pr}(\mathbf{C} \mid \mathbf{y}) & =\frac{\operatorname{Pr}(\mathbf{C}) \prod_{i j} f\left(y_{i j} \mid C_{i j}\right)}{\sum_{\mathbf{c}^{\prime}} \operatorname{Pr}\left(\mathbf{C}^{\prime}\right) \prod_{i j} f\left(y_{i j} \mid C_{i j}^{\prime}\right)}
\end{aligned}
$$

Det matematisk-naturvitenskapelige fakultet

Questions

Metropolis Hastings is a general form:

- Specific chains:
- Random walk chains
- Independent chains
- Gibbs sampler
- Tricks to customize sampling
- Reparametrize
- Block update
- Hybrid
- Griddy Gibbs

Random walk chains

- Popular choice of proposal distribution:

$$
\mathbf{X}^{*}=\mathbf{x}+\boldsymbol{\varepsilon}
$$

- $g\left(\mathbf{x}^{*} \mid \mathbf{x}\right)=h\left(\mathbf{x}^{*}-\mathbf{x}\right)$
- Popular choices: Uniform, Gaussian, t-distribution
- Note: If $h(\cdot)$ is symmetric, $g\left(\mathbf{x}^{*} \mid \mathbf{x}\right)=g\left(\mathbf{x} \mid \mathbf{x}^{*}\right)$ and

$$
R\left(\mathbf{x}, \mathbf{x}^{*}\right)=\frac{f\left(\mathbf{x}^{*}\right) g\left(\mathbf{x} \mid \mathbf{x}^{*}\right)}{f(\mathbf{x}) g\left(\mathbf{x}^{*} \mid \mathbf{x}\right)}=\frac{f\left(\mathbf{x}^{*}\right)}{f(\mathbf{x})}
$$

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Example

- Assume $f(x) \propto \exp \left(-|x|^{3} / 3\right)$
- Proposal distribution $N\left(x, 4^{2}\right)$
- Example_MH_cubic.R

```
#Initial value
x = rnorm(1)
acc =0
for(i in 2:N)
{
    y = rnorm(1,x[i-1],4) # proposal
    R}=\mathbf{f}(\mathbf{y})/\mathbf{f}(\mathbf{x}[\mathbf{i}-1]) # acceptance ratio
    if(runif(1)<R) # The syntax her will give that since we allways accept if R>1
    {
        x[i] = y
        acc = acc+1
    }
    else
        x[i] = x[i-1]
}
```


UiO : Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Results random walk

Acceptance rate
$=0.2755276$
Lag one scatterplot

The repeats of a value is needed to get the correct distribution

Compare histograms
to true distribution

This is kind of similar to what we have for sampling importance resampling (SIR) If a value is repeated it gets «more weight»

The effect variance in proposal distribution

$$
g(y \mid x)=\phi\left(y ; x, 0.04^{2}\right) \quad g(y \mid x)=\phi\left(y ; x, 1^{2}\right) \quad g(y \mid x)=\phi\left(y ; x, 100^{2}\right)
$$

Too small steps, high acceptance high correlation $*$

Just about right, good acceptance low correlation ©

Acc. Rate $=0.700$

Too large changes proposed, low acceptance

Det matematisk-naturvitenskapelige fakultet

Questions?

Independent chains

- Assume $g\left(\mathbf{x}^{*} \mid \mathbf{x}\right)=g\left(\mathbf{x}^{*}\right)$. Then

$$
R\left(\mathbf{x}, \mathbf{x}^{*}\right)=\frac{f\left(\mathbf{x}^{*}\right) g(\mathbf{x})}{f(\mathbf{x}) g\left(\mathbf{x}^{*}\right)}=\frac{\frac{f\left(\mathbf{x}^{*}\right)}{g\left(\mathbf{x}^{*}\right)}}{\frac{f(\mathbf{x})}{g(\mathbf{x})}},
$$

fraction of importance weights!

- Behave very much like importance sampling and SIR
- Difficult to specify $g(\mathbf{x})$ for high-dimensional problems
- Theoretical properties easier to evaluate than for random walk versions.

Challenges similar to what seen in:

- rejection sampling
- importance sampling
- sampling importance resampling

UiO : Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Example

- Assume $f(x) \propto \exp \left(-|x|^{3} / 3\right)$

$$
g(y \mid x)=\phi\left(y ; 0,1^{2}\right)
$$

Example_MH_cubic_independence.R

```
N =10000 # Number of iterations
x = rep (NA,N)
varProp=1^2 # variance of proposal
#Initial value
x = rnorm(1,0,varProp)
acc = 0
for(i in 2:N)
y = rnorm(1,0,varProp) # proposal
    R = f(y)*dnorm(x[i-1],0,varProp)/(f(x[i-1])*dnorm(y,0,varProp)) # acceptance ratio
    # note that the acceptance rate is min(1,R)
    if(runif(1)<R) # The syntax her will give that since we allways accept if R>1
    {
        x[i] = y
        acc = acc+1
}
    else
    x[i] = x[i-1]
}
```


UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet
Results independent

Acceptance rate= 0.9149915

The effect variance in proposal distribution

$$
g(y \mid x)=\phi\left(y ; 0,0.25^{2}\right) \quad g(y \mid x)=\phi\left(y ; 0,4^{2}\right)
$$

$$
\text { Traceplot } \times(10000 \text { first) }
$$

Acc. rate $=0.419$
Too narrow proposal, good acceptance high correlation $*$

$g(y \mid x)=\phi\left(y ; 0,100^{2}\right)$

Acc. Rate $=0.012$
Too large changes proposed, low acceptance high correlation $*$

Det matematisk-naturvitenskapelige fakultet

Questions

M-H and multivariate settings

- $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$
- Typical in this case: Only change one or a few components at a time.
(1) Choose index j (randomly)
(2) Sample $X_{j}^{*} \sim g_{j}(\cdot \mid \mathbf{x})$, put $X_{k}^{*}=X_{k}$ for $k \neq j$
(3) Compute

$$
R\left(\mathbf{x}, \mathbf{X}^{*}\right)=\frac{f\left(\mathbf{X}^{*}\right) g\left(\mathbf{x} \mid \mathbf{X}^{*}\right)}{f(\mathbf{x}) g\left(\mathbf{X}^{*} \mid \mathbf{X}\right)}
$$

(4) Put

$$
\mathbf{Y}= \begin{cases}\mathbf{X}^{*} & \text { with probability } \min \left\{1, R\left(\mathbf{x}, \mathbf{X}^{*}\right)\right\} \\ \mathbf{x} & \text { otherwise }\end{cases}
$$

- Can show that this version also satisfies detailed balance
- Can even go through indexes systematic
- Should then consider the whole loop through all components as one iteration

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Example multivariate with single coordinate update

- Assume $f(\mathbf{x}) \propto \exp \left(-\|\mathbf{x}\|^{3} / 3\right)=\exp \left(-\left[\|\mathbf{x}\|^{2}\right]^{3 / 2} / 3\right)$
- Proposal distribution
(1) $j \sim$ Uniform $[1,2, \ldots, p]$
(2) $x_{j}^{*} \sim N\left(x_{j}, 1\right)$
- Example_MH_cubic_multivariate.R
\#proposal distribution: Gaussian distribution centered at previous value
$\mathrm{p}=50$
$\mathrm{N}=10000 \quad$ \# Number of iterations
$\mathrm{x}=$ matrix (nrow $=\mathrm{N}, \mathrm{ncol}=\mathrm{p}$)
\#Initial value
$\mathrm{x}[1]=,\operatorname{rnorm}(\mathrm{p})$
acc $=0$
for (i in $2: \mathrm{N}$)
\{
$\mathrm{j}=\operatorname{sample}(1: p, 1)$
$y=x[i-1$,
$y[j]=\operatorname{rnorm}(1, x[i-1, j], 2)$
$R=f(y) * \operatorname{dnorm}(x[i-1, j], y[j], 1) /(f(x[i-1]), * \operatorname{dnorm}(y[j], x[i-1, j], 1))$
if (runif (1) $<$ R)
\{
$x[i]=$,
$\mathrm{acc}=\mathrm{acc}+1$
\}
else
$x[i]=,x[i-1$,
\}

See also fixed scan in: Example_MH_cubic_multivariate_2.R

UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Results independent

Det matematisk-naturvitenskapelige fakultet

Questions

