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Last time McMC

• Markov chain Monte Carlo

– Make a Markov P(y|x) chain with  f(x) as 

limiting distribution / stationary distribution

– Markov chain discrete/continuous

– Irreducible, recurrent, aperiodic

– Detailed balance

– Metropolis-Hastings algorithm

– Random walk  g(y|x)=h(y-x), h() symmetric  

– Independent sampler g(y|x)=h(y)

– M-H and multivariate settings
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Lag 1 scatter

𝐲 ≠ 𝐱



Metropolis Hastings is a general form:

• Specific chains:

– Random walk chain

– Independent chain

– Gibbs sampler

• Tricks to customize sampling

– Augmentation

– Reparametrize

– Hybrid

– Block update

– Griddy-Gibbs

4



M-H and multivariate settings
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Gibbs sampler
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Example capture recapture
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Note: N is a parameter 

no proportionality trick 

c  = catch

m = mark (new)



Capture recapture cont…
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Capture recapture cont…

𝑁!

𝑁 −𝑚1 !𝑚1!
⋅

𝑁 −𝑚1 !

𝑁 − 𝑚1 −𝑚2 !𝑚2!
⋯

𝑁 − σ𝑘=1
𝑙−1 𝑚𝑘 !

𝑁 − σ𝑘=1
𝑙 𝑚𝑘 !𝑚𝑙!

∝
𝑁!

𝑁 − σ𝑘=1
𝑙 𝑚𝑘 !

∝
𝑁

σ𝑚𝑘



The conditional distribution of α𝒊
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Likelihood:

∝
𝑁

σ𝑘=1
𝑙 𝑚𝑘

ෑ

𝑘=1

𝑙

𝛼𝑖
𝑐𝑖 1 − 𝛼𝑖

𝑁−𝑐𝑖 Everything except 

𝛼𝑖 is constant! 

∝ 𝛼𝑖
𝜃1−1 1 − 𝛼𝑖

𝜃2−1 ⋅ 𝛼𝑖
𝑐𝑖 1 − 𝛼𝑖

𝑁−𝑐𝑖

∝ 𝛼𝑖
𝜃1+𝑐𝑖−1 1 − 𝛼𝑖

𝜃2+𝑁−𝑐𝑖−1

Posterior:

∝ 𝛼𝑖
𝜃1−1 1 − 𝛼𝑖

𝜃2−1



The conditional distribution of N
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Likelihood:

∝
𝑁

σ𝑘=1
𝑙 𝑚𝑘

ෑ

𝑖=1

𝑙

𝛼𝑖
𝑐𝑖 1 − 𝛼𝑖

𝑁−𝑐𝑖

Everything except 

N is constant! 

Posterior:

∝
𝑁

σ𝑘=1
𝑙 𝑚𝑘

ෑ

𝑘=1

𝑙

𝛼𝑖
𝑐𝑖 1 − 𝛼𝑖

𝑁−𝑐𝑖

∝
𝑁

σ𝑘=1
𝑙 𝑚𝑘

ෑ

𝑘=1

𝑙

1 − 𝛼𝑖
𝑁 ∝

𝑁

σ𝑘=1
𝑙 𝑚𝑘

ෑ

𝑘=1

𝑙

1 − 𝛼𝑖

𝑁

Negative binomial 𝑘 = 𝑛 − 𝑟 ≥ 0Binomial

Pr 𝑋 = 𝑛 =
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Capture recapture cont…



Properties of Gibbs sampler-random scan
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𝐱−j = 𝐱−j
∗

Pr(𝑥𝑗 is changed)

Proposal density given

𝑥𝑗 is changed



Gibbs sampler-deterministic scan
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Proof d=2
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=1

=1



We start again 14.15
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Metropolis Hastings is a general form:

• Specific chains:

– Random walk chain

– Independent chain

– Gibbs sampler

• Tricks to customize sampling

– Reparametrize

– Augmentation

– Hybrid

– Block update

– Griddy-Gibbs
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Reparameterization

• Sometimes easier to transform variables to 

another scale 𝑌 = ℎ−1 (𝑋)

• Avoid boundary effects  (Exercise 7.1)

• May improve convergence (Exercise 7.8)

• Two approaches (identical results)

– Possible to work directly in transformed space

– Run the MCMC in X-space, but construct 

proposal through 𝑋∗ = ℎ(𝑌∗)
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Reparameterization version 1
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Reparameterization version 2,  1D
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𝑔𝑥 𝑥∗ 𝑥 = 𝑔𝑦 ℎ−1 𝑥∗ ℎ−1 𝑥 ⋅ |(ℎ−1)′(𝑥∗)|

𝑅 𝑥, 𝑥∗ =
𝑓𝑥(𝑥

∗) ⋅ 𝑔𝑦 ℎ−1 𝑥 ℎ−1 𝑥∗ ⋅ |(ℎ−1)′(𝑥∗)|

𝑓𝑥 𝑥 ⋅ 𝑔𝑦 ℎ−1 𝑥∗ ℎ−1 𝑥 ⋅ |(ℎ−1)′(𝑥)|

The derivative of the inverse function

with respect to the argument. ℎ 𝑥 = 𝑦; 𝑥 = ℎ−1(𝑥)



Hybrid Gibbs sampler
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Capture-recapture - extended approach

22

Sample using M.H

= Hybrid Gibbs sampler



Variable augmentation

• It is difficult or impossible to sample 

𝛿 directly, but there exists a “latent variable” z 

such that it is possible to conditionally 

sample 𝑧|𝛿 and 𝛿|𝑧
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latent variable

data

parameter

Example



Example mixture distribution (augmenting)
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Augmenting the

variable set with z

(similar to EM-algorithm)



Example mixture distribution cont…
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Blocking/ Block update
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• When dividing 𝑋 = (𝑋1, … , 𝑋𝑝), each 𝑋𝑗 can 

be vectors 

• Making each 𝑋𝑗 as large as possible will 

typically improve convergence

• Especially beneficial when high correlation 

between single components



Griddy Gibbs sampler

• Many variants

• Assume that one dimension  is particularly 

hard to sample, i.e. 𝑓(𝑥𝑗|𝒙−𝑗)

• Simplest version of Griddy Gibbs:

– Initialize: Sample  𝑧1, 𝑧2, … , 𝑧𝑛 from 𝑔(𝑧)

– Per iteration: 

• Compute weights 𝑤𝑗
(𝑡)

∝ 𝑓(𝑧𝑗|𝒙−𝑗
(𝑡)
)/𝑔(𝑧𝑗)

• Sample 𝑥𝑗
(𝑡)
|𝒙−𝑗

(𝑡)
∼ (𝑧𝑗 , 𝑤𝑗

(𝑡)
)

• Need to keep 𝑧1, 𝑧2, … , 𝑧𝑛 fixed through 

iterations
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Convergence issues of MCMC 
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Mixing
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Effective sample size for MCMC
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Example from exercise 7.8
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How to assess convergence
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Note: We can have the situation that:  

• some variables mix well

• other have bad mixing

Better

Bad



The Gelman-Rubin diagnostic
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Example: Exercise 7.8 
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Apparent convergence
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Choices 

• Gibbs sampler

– Random or deterministic scan? 

• Deterministic scan most common (?)

• When high correlation, random scan can be more efficient

• Independence chain:

– 𝑔(·) ≈ 𝑓 (·)

– High acceptance rate 

– Tail properties most important 

– f /g should be bounded

• Random walk proposal 

– Tune variance so that acceptance rate 

is between 25% and 50%
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My experience:

Random is robust

You should rather spend time 

improving other parts of code



Number of chains
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Data uncertainty and Monte Carlo 

uncertainty
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Next time

• Advanced topics in MCMC 

• Presentation of part 2 compulsory

40


