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Last time

• Code examples MCMC
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Requirement for convergence

• Markov chain:

– is Irreducible: you can visit all of parameter space

– is Aperiodic : you do not go in loop

– Is Recurrent : you will always return to a set

– Has the correct stationary distribution
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Detailed balance: 

𝑓 𝒚 𝑃 𝒙 𝒚 = 𝑓 𝒙 𝑃(𝒚|𝒙)

Sufficient for 

stationary 

distribution

No guarantee for the other three



Error in independence sampler

Example 1:  Independence sampler:

• Target:   𝑓 𝑥 = 𝜙(𝑥; 0,12) (standard normal)

• Proposal: 𝑔 𝑥 = 0.5 for − 1 < 𝑥 ≤ 1 (uniform)

• Result: 𝑝𝐿(𝑥) =
𝜙 𝑥;0,12

Φ 1 −Φ(−1)
for − 1 < 𝑥 ≤ 1 (truncated)

• Your proposal does not allow you to visit outside the 

interval:  −1 < 𝑥 ≤ 1 irreducible fail
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Gibbs sampler failure, not irreducible
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MCMC and Bayesian Modeling(2017), Martin Haugh Columbia University

(under resources on course page)



When does a MCMC fail periodicity?

• Rare in continuous chains, avoided by 

construction

• PRNG  with a short period may cause a 

periodicity failure 

– 𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑐 mod𝑚

=> Use Mersenne Twister (or another modern PRNG)
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Example recurrent fail : improper prior

• 𝑓 𝒙 ∝ 1 , 𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3

• Random walk

• 𝑝 𝒙∗ 𝒙 = 𝜙 𝑥1
∗; 𝑥1, 1 ⋅ 𝜙 𝑥2

∗; 𝑥2, 1 ⋅ 𝜙(𝑥3
∗; 𝑥3, 1)

• Irreducible? (possible to reach any point  with a finite 

number of steps)

– Yes,  there is a positive probability for any set of non-zero 

measure in one step.

• Aperiodic?

– Yes, any non zero set can be reached at any time 

• Detailed balance?

– Yes we have 𝑝 𝒙∗ 𝒙 𝑓(𝒙)=𝑝 𝒙 𝒙∗ 𝑓(𝒙∗)

• So what could go wrong?? 

– The chain is not recurrent
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Example  random walk in 𝑅3
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If you get sample paths 

like these, you might 

have a recurrence issue

Perhaps your target 

distribution is not a 

proper distribution 

[not easy to tell upfront]

If you safe guard 

yourself against zero 

density regions by 

setting a minimum 

density value. 

[you get into trouble]



Reccurent fail

• Since we often work with log density  a probability of zero 

causes problems. A quick fix could be to allow the 

probability to be slightly positive everywhere. 

This is not a good solution

– Having a small probability for everything gives problems 

=> Mc fail to be recurrent
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If you get 

out here and dimension 

is larger than  2 chances 

are that you will never 

return to «central part»



Example where we it is easy to overlook 

detailed balance (and it matters)

• Target: 𝑓 𝑥 = 0.5 for − 1 < 𝑥 ≤ 1 (uniform)

• Proposal: 𝑔 𝑥∗|𝑥 = 𝜙 𝑥∗; 𝑥, 𝜎(𝑥)2

𝜎 𝑥 = max(1 − 𝑥 , 0.1)

Want to avoid many proposals outside the interval

• MH-Ratio: 

𝑅 𝑥∗ 𝑥 =
𝑓 𝑥∗ 𝜙 𝑥; 𝑥∗, 𝜎(𝑥∗)2

𝑓 𝑥 𝜙 𝑥∗; 𝑥, 𝜎(𝑥)2

Classic mistake - forget:  
𝜙 𝑥;𝑥∗,𝜎 𝑥∗ 2

𝜙 𝑥∗;𝑥,𝜎 𝑥 2
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Results with and without  error:
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Forget: 
𝜙 𝑥;𝑥∗,𝜎 𝑥∗ 2

𝜙 𝑥∗;𝑥,𝜎 𝑥 2

☺



Advanced topics in MCMC 

• Adaptive MCMC: Automatic tuning of 

proposal distributions (ex 36)

• Multiple-Try M-H (improve griddy Gibbs)

• Slice sampler

• Simulated tempering

• Reversible Jump MCMC (model selection)

• Langevin

• Hamiltonian  [Central for STAN]
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Adaptive MCMC

• Want: Automatic tuning of proposal distributions

(To get a black box algorithm- universal inference) 

• Main challenge: Specifying proposal based on history of 

chain breaks down the Markov property

• Solution: Reduce the amount of tuning as the number of 

iterations increase

• Example: Tune the variance in proposal distribution per 

component in random walk to get 44% acceptance rate
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Multiple-Try M-H

• Want: A standard M-H approach gives one proposal 

(which might be bad), if we could propose many and 

«select» the best 

• Solution:

– Generate 𝑘 proposals 𝑋1
∗, … , 𝑋𝑘

∗ from 𝑔(· |𝑥(𝑡) )

– Select  𝑋𝑗
∗ with probability 

𝑤 𝑥 𝑡 , 𝑋𝑗
∗ = 𝑓 𝑥 𝑡 ⋅ 𝑔 𝑋𝑗

∗ 𝑥 𝑡 ⋅ 𝜆(𝑥(𝑡), 𝑋𝑗
∗ )

– Reverse:

– Generate 𝑘 − 1 reverse 𝑋1
∗∗, … , 𝑋𝑘−1

∗∗ from 𝑔(· |𝑋𝑗
∗ ),

– Put 𝑋𝑘
∗∗ = 𝑥(𝑡)

– Use Generalized M-H ratio 

𝑅𝑔 =
σ𝑖=1
𝑘 𝑤(𝑥 𝑡 , 𝑋𝑖

∗)

σ𝑖=1
𝑘 𝑤(𝑋𝑗

∗, 𝑋𝑖
∗∗)
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𝜆(𝑥, 𝑦) symmetric 



Slice sampler
• Want: Show that sampling from any distribution can be 

reduced to sampling from a uniform distribution (on a 

restricted domain) 

• Solution: Sample the uniform distribution obtained by the 

image of the distribution.

– Alternate horizontal moves

– Vertical moves 

• Multivariate distributions using one-dimensional conditional 

• Do not require sampling of the conditional distributions 

only need to evaluate them 

• Can cope with multiple modes if not too far apart
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Simulated tempering

• Want: to bypass “low probability” regions 

• Solution:

– Define  𝑓𝑖 𝑥 ∝ 𝑓 𝑥 Τ1 𝜏𝑖 , 1 = 𝜏1 < 𝜏2 < · · · 𝜏𝑚
– Simulate pair (𝑋, 𝐼), where 𝐼 changes distribution

𝑥, 𝑖 ∝ 𝑓𝑖 𝑥 𝑝(𝑖)

Chain: 𝑥𝑘, 𝑖𝑘 , 𝑘 = 1,… , 𝑁 with

Inference:

1) Use subset where 𝑖𝑘 = 1

2) Importance weigthing can be used to include all samples
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𝑓𝑖 𝑥 ∝ exp
log 𝑓 𝑥

𝜏𝑖

Parallell to simulated anealing, 

but we stop at 𝜏𝑖 = 1, and can

go back up



Simulated tempering
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• Alternate changes to 𝑥 and 𝑖

• Change 𝑥 by standard M-H 

when currently at level 𝑖

𝑅𝑖 𝑥
∗ 𝑥 =

𝑓𝑖 𝑥∗ 𝑔(𝑥|𝑥∗)

𝑓𝑖 𝑥 𝑔(𝑥∗|𝑥)

• Proposal for 𝑖 (simple) 𝑔 𝑖∗ 𝑖 :
– On the edge move deterministic

– In center 50-50 increase or 

decrease

• M-H Ratio

𝑓 𝑥

𝑓2 𝑥

𝑓3 𝑥

𝑓4 𝑥

𝑔 2 1 = 1

𝑔 𝑀 − 1 𝑀 = 1
𝑔 𝑘 ≠ 2 1 = 0

𝑔 𝑘 ≠ 𝑀 − 1 𝑀 = 0

𝑔 𝑘 − 𝑗 = 1 𝑗 =
1

2

𝑔 𝑘 − 𝑗 ≠ 1 𝑗 = 0

𝑅𝑆𝑇(𝑖
∗|𝑖, 𝑥) =

𝑓𝑖
∗
𝑥 ⋅ 𝑝 𝑖∗ ⋅ 𝑔 𝑖 𝑖∗

𝑓𝑖 𝑥 ⋅ 𝑝 𝑖 ⋅ 𝑔(𝑖∗|𝑖)



Simulated tempering
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• Select 𝑝(𝑖) such that the algorithm spends 

equal time at each level

• Lowest level is the target distribution

• Highest level is the set such that we can 

move freely

• Number of levels:

• Too high we use too much time climbing up and 

down 

• Too low we do not get acceptance moving 

between layers 



Reversible Jump MCMC 

• Assume several models 𝑀1, … ,𝑀𝐾

• Corresponding parameters 𝜃1, … , 𝜃𝐾
off different dimensions and different interpretations!

• RJMCMC is a M-H method for moving between 

spaces of different dimensions 

• Want to: Simulate pairs  𝑋 = (𝑀, 𝜃𝑀)

• Main challenge:

– When changing 𝑀 → 𝑀∗, how to propose 𝜃𝑀∗
∗ ,

– construct a reversible chain using auxiliary variables

• Example: Bayesian model selection
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Langevin M-H
• Want: To avoid symmetric proposal rules which propose moves 

into low probability areas and giving low acceptance rates

• Solution: Changes the proposal distribution of the MH 

algorithm to favor proposals in the direction of the maximum 

gradient of the target density. thus moving the chains towards 

the high density regions of the distribution

𝑔 𝒙∗ 𝒙 ∼ 𝑁(𝒙∗, 𝒙 + 𝒅𝑥, 𝜎
2)

• The proposal density depends on the location of the current 

sample and this is not symmetric

• When 𝑔(𝒙∗|𝒙) favors high probability the 𝑔 𝒙 𝒙∗ tend to be 

low, so we do not get the full benefit [“reverse penalty”] 21

𝑅(𝒙∗|𝒙) =
𝑓 𝒙∗ ⋅ 𝑔 𝒙 𝒙∗

𝑓 𝒙 ⋅ 𝑔(𝒙∗|𝒙)

𝒅𝑥 =
𝜎2

2
ቤ

𝜕 log 𝑓(𝒖)

𝜕𝒖
𝒖=𝒙



• Want: To avoid symmetric proposal rules which propose moves into 

low probability areas and giving low acceptance rates, but want to 

avoid the “reverse penalty”  from Langevin

• Solution: Adding a momentum term p to each component of the 

target variable q (auxiliary variable = p) , 

– Helps the chain move more rapidly though the target distribution 

– It favors successive proposals in the same direction, allowing the simulation to 

move rapidly through the space

– Update target q and  and moment p simultaneously  . 

– We couple the proposal of the target variables q and the auxiliary variables p

such that a low probability of the target variable is countered by a high probability 

of the auxiliary variables [avoid “reverse penalty”]

– Interpreted as a trade off between potential and kinetic energy  
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Hamiltonian MC

target variables auxiliary variables



Hamiltonian MC 
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Momentum
«potential energy»

«kinetic energy»

Figure from: https://www.imperial.ac.uk/inference-group/projects/monte-carlo-methods/hamiltonian-monte-carlo/



Hamiltonian MC Algorithm 

24Figure from: https://mucrn.missouri.edu/assets/docs/stanintro_0.pdf



Hamiltonian dynamics preserve energy
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«Conservation of energy»

Potential to kinetic

Need to solve equations 

for the Hamiltonian Dynamics

by numerical scheeme



Hamiltonian dynamics - Eulers method
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Negative log-density



Hamiltonian dynamics - the modified 

Eulers method
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Hamiltonian dynamics –

the Leapfrog method

By solving this excact we get the inverse 

proposal to be identical and we keep the total energy

(in practice still need to correct for approaximation)

𝑅 𝒙∗ 𝒙 =
𝑓 𝒙∗ ⋅ 𝑔 𝒙 𝒙∗

𝑓 𝒙 ⋅ 𝑔 𝒙∗ 𝒙
=
exp(−𝐻 𝒒∗, 𝒑∗ )𝑔 𝒒, 𝒑 𝒒∗, 𝒑∗

exp(−𝐻 𝒒, 𝒑 )𝑔 𝒒∗, 𝒑∗ 𝒒, 𝒑
=
exp(−𝐻 𝒒∗, 𝒑∗ )

exp(−𝐻 𝒒, 𝒑 )



Example - 2-dimensional Gaussian
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Standard

Leap - frog



30

Sets the kinetic

energy

Conservation of

energy

Metropolis

Hastings



Example - mixture Gaussians
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)
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