
STK-4051/9051  Computational Statistics  Spring 2021

Software for Bayesian Inference
Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

mailto:oddkol@math.uio.no


Variational inference

3

𝐸 ℎ 𝒛 𝒙 ≈ න
𝒛

ℎ 𝒛 𝑞∗(𝒛)𝑑𝒛

CAVI: Coordinate ascent variational inference

KL 𝑞(𝒛)|| 𝑝(𝒛|𝒙) = න
𝑧

log
𝑞 𝒛

𝑝 𝒛 𝒙
𝑞 𝒛 𝑑𝒛

= 𝐸𝑞 log 𝑞(𝒁) − 𝐸𝑞 log 𝑝 𝒁 𝒙



Software 
• There is always an existing software that ”does your job” 

• Even if the software does not do exactly what you want maybe it is 

good enough (cost - benefit)

• The challenge is to figure out how this works 

(and how you can make it do what you want)

• Reasons not to make your own computer code:

– existing code is tested (less bugs) 

– existing code is optimized (speed) 

– often related to publications easier to get others to ”accept it” 

• Reasons to make your own computer code:

– understand the methodology better 

– improve/develop existing methodology 

– combining with other techniques 

– compete with existing computer code 

– because you have too much spare time
4



Software for Bayesian inference

• MCMC  (https://en.wikipedia.org/wiki/Probabilistic_programming)

– WinBUGS

– OpenBUGS

– JAGS ( Just Another Gibbs Sampler)

– TensorFlow Probability

– R-STAN (Hamiltonian MC)

• Approximation

– R-STAN ( Variational Inference )

– TensorFlow Probability ( Variational Inference )

– R-INLA (Integrated Nested Laplace Approximations)

5

BUGS = Bayesian inference Using Gibbs Sampler

https://en.wikipedia.org/wiki/Probabilistic_programming


6



7

“Adaptive Hamiltonian MC”



How things are built together

8



What does a stan call do in R?

• The stan function does all of the work of fitting a Stan model and returning the results 

as an instance of stanfit. 

• The steps are roughly as follows:

– Translate the Stan model to C++ code. (stanc)

– Compile the C++ code into a binary shared object, which is loaded into the current R session 

(an object of S4 class stanmodel is created). (stan_model)

– Draw samples and wrap them in an object of S4 class stanfit. (sampling)

• The returned object can be used with methods such as print, summary, and plot to 

inspect and retrieve the results of the fitted model.

• stan can also be used to sample again from a fitted model under different settings 

(e.g., different iter, data, etc.) by using the fit argument to specify an existing stanfit

object. In this case, the compiled C++ code for the model is reused.

• Stan keeps track of what he has already compiled, if you change file you get: 

(not an error)



What does a stan call do in R?

• The stan function does all of the work of fitting a Stan model and returning the results 

as an instance of stanfit. 

• The steps are roughly as follows:

– Translate the Stan model to C++ code. (stanc)

– Compile the C++ code into a binary shared object, which is loaded into the current R session 

(an object of S4 class stanmodel is created). (stan_model)

– Draw samples and wrap them in an object of S4 class stanfit. (sampling)

• The returned object can be used with methods such as print, summary, and plot to 

inspect and retrieve the results of the fitted model.

• stan can also be used to sample again from a fitted model under different settings 

(e.g., different iter, data, etc.) by using the fit argument to specify an existing stanfit

object. In this case, the compiled C++ code for the model is reused.

• Stan keeps track of what he has already compiled, if you change file you get: 

(not an error)



Meta analysis of treatment effect in  8 

schools

• Effect of coaching program for SAT-V  
(Scholastic Aptitude Test - Verbal)

• Data analyzed at each school  separately to derive:
– Estimated treatment effect (Treatment=Special preparation)

– Standard error of the treatment effect

• Analysis of data at each school adjust for PSAT (initial 
level of students)

• By pooling data across experiments we can improve all 
estimates

• Is the pooling justified or is there an effect of “better” 
teaching at schools that does the best job
– If so we should look to the best school to  investigate what they 

did differently (~right)



Data from Rubin (1981)

Code on webpage: 8schools.r, 

8schools.stan, 8schoolsDirect.stan



Running Stan in RStudio

Be sure that your Stan programs 
ends in a blank line without any 
characters including spaces and 
comments.

• RStudio version 1.2.x or later
Has good support for R-STAN

• File -> New File -> Stan File

rstan install

add to current session

Data (Rubin 1981)

Run

Stan program for the model

files

https://www.rstudio.com/products/rstudio/download/preview/


Content of    .stan file
• Data

– Real numbers with constraints

– 𝒚, 𝝈

• Transformed data:   (not a good name)

– Real numbers and equations executed once

– Typically fixed hyper parameters

– alpha = 1, beta = 1

– Any variable that is defined wholly in terms of data or 

transformed data should be declared and defined in 

the transformed data block.

• Parameter

– The random variables we will sample

– 𝜼 = (𝜂1, … , 𝜂𝑝), 𝜇, 𝜏

• Transformed parameters

– 𝑥𝑖 = 𝜏 ⋅ 𝜂𝑖 + 𝜇

• Model

– Prior: 𝑝 𝜼, 𝜇, 𝜏

– Likelihood: 𝑝(𝒚|𝒙, 𝜇, 𝜏)

• Generated quantities

– ℎ(𝒙, 𝜇, 𝜏 )

Prior of mu and tau are not defined in 

model

=> Improper prior:   𝑓 𝜇, 𝜏 ∝ 1

𝐸[ℎ(𝒙, 𝜇, 𝜎)|𝑦]

= න
𝒛

ℎ(𝒙, 𝜇, 𝜏)𝑝(𝒙, 𝜇, 𝜏|𝑦)𝑑𝒙𝑑𝜇𝑑𝜎



15



Model https://mc-stan.org/docs/2_26/functions-reference/



Vectorization of model 

conditional independence assumed

• Dependency structure:

– Built in:
• MultiNormal

• Hidden Markov models

• Wishart/Inverse Wishart

– Program it

𝑦n

𝜇𝑛

𝜎

𝑝 𝑦𝑛 𝒚−𝑛, 𝝁, 𝜎 = 𝑝 𝑦𝑛 𝜇𝑛, 𝜎

Conditional independence ☺

☺







Tip about priors

18

The Stan Forums (mc-stan.org)

https://discourse.mc-stan.org/


Stan MCMC 

parameters

• file: The path to the Stan program. Use  a .stan extension 

• model_code: A  character string (or variable) containing the 

model definition

• fit:  An instance of S4 class stanfit derived from a previous fit;  

Time for recompiling the C++ code for the model can be saved.

• model_name:  A string to use as the name of the model; 

(affects the name used in printed messages),

• data: A named list or environment providing the data for the

model, or a character vector for all the names of objects

to use as data. 

• pars:  A character vector specifying parameters of interest to 

be saved(or not). The default is to save all parameters

from the model. 

• include: include or exclude the parameters given by the pars

argument

• Iter:  total number of iterations (including warmup). 

The default is 2000.

• warmup: The number of  samples in warmup (aka burnin) 

(also controls the number of iterations for which 

adaptation is run)

• chains: The number of Markov chains. 

• thin:  A positive integer specifying the period for saving samples. 

• algorithm 

– “NUTS", which is the No-U-Turn sampler variant of Hamiltonian 

Monte Carlo 

(Hoffman and Gelman 2011, Betancourt 2017). 

– "HMC" (Hamiltonian Monte Carlo), 

– "Fixed_param” no sampling is performed (e.g., for simulating with 

in the generated quantities block).

stan(file,

model_name = "anon_model",

model_code = "", 

fit = NA, 

data = list(), 

pars = NA, 

chains = 4, 

iter = 2000, 

warmup = floor(iter/2), 

thin = 1, 

init = "random", 

seed = sample.int(.Machine$integer.max, 1), 

algorithm = c("NUTS", "HMC", "Fixed_param"), 

....)

… =

Specification of initial values 

File name for diagnostics

Print out in R console

Save warm up

Number of cores to use

Call to other than default libraries

Parameters to control the sampler's behavior. 

Alternative

Model 

definitions



Running Stan

fit1 = stan(file = '8schools.stan', 

data = schools_dat,

iter=1.1*N, 

warmup=0.1*N,

thin=N/1000, 

chains=4, 

seed=231171,  

refresh=10000)

fit1 = stan(file = '8schools.stan', 

data = schools_dat,

iter=1.1*N, 

warmup=0.1*N,

thin=N/1000, 

chains=4, 

seed=231171,  

refresh=10000,

control=list(adapt_delta=0.95))

 ☺

N=10000



Runtime Reported divergence

• Divergence:  the simulated 

Hamiltonian trajectory does not 

conserve energy. (i.e. depart from 

the true trajectory)

• Limits the ability to explore the 

posterior distribution.

(can cause irreducible issues)

• When this 

divergence is 

too high, the 

simulation has 

gone off the 

rails and 

cannot be 

trusted

ta
u

log posterior



The effect of clever transformations

normalized

Sample 𝜂𝑖~𝑁(0,1)
Compute: θ= 𝜇 + 𝜏 ⋅ 𝜂

Sample 𝜃𝑖 ~ 𝑁(𝜇, 𝜏2)
Compute: 𝜂 = (𝜃 − 𝜇)/𝜏

Identical models. The difference is 

correlations vs not  

recap Exercise   42 vs 39𝜂1

𝜂2

𝜃1

𝜃2



Running two models

No reported errors  !

Related to 

lag 1 correlation 

of log posterior

Problem with: 

divergence, 

Effective sample size

Bayesian Fraction of Missing Information (BFMI)



Result of chain: 

Effective number of samples is 

consistently high

Effective number of samples is variable 

some low some high

Have not investigated full space



Pairs() is specialized in STAN

Log posterior Log posterior

The models are the same but log posterior is different why?



Credibility intervals

plot(fit1,pars = c("mu", "tau", "eta"),ci_level = 0.95,outer_level = 0.99)     plot(fit2,pars = c("mu", "tau", "eta"),ci_level = 0.95,outer_level = 0.99)

DirectTransformed



Convergence for MCMC, 

cumulative mean mu

DirectTransformed



Convergence for MCMC, 

cumulative mean tau

DirectTransformed



Likelihood

DirectTransformed



Result MCMC long

DirectTransformed
• The Transformed approach has 

better convergence properties

• In a long run 100000 samples

• The difference between the two 
chains is not large

• Results
• The effect of coaching is not 

significant 5%-level, but has a 
strong indication

• The «good» school appears as 
a «lucky shot»



31



32



Variational Bayes in STAN

• The same STAN program can be used to 

make inference by variational Bayes 

• vb()  replace stan()

𝐸 ℎ 𝒛 𝒙 ≈ න
𝒛

ℎ 𝒛 𝑞∗(𝒛)𝑑𝒛



Variational Bayes in STAN

• vb(object, 

data = list(), 

pars = NA, 

include = TRUE,

init = 'random', 

check_data = TRUE, 

sample_file = tempfile(fileext = '.csv'),

algorithm = c("meanfield", "fullrank"),

importance_resampling = FALSE, 

keep_every = 1,  

...) 

Making a stanmodel

• stan_model(file, 

model_name = "anon_model", 

model_code = "", 

…)

• object An object of class stanmodel.

• data A named list or environment providing 

the data for the model 

• check_data If TRUE the data will be preprocessed

• algorithm

– "meanfield"  uses a fully factorized 

Gaussian for the approximation 

– "fullrank", uses a Gaussian with a full-rank 

covariance matrix for the approximation.

• importance_resampling: If TRUE we do importance 

resampling to adjust the draws at the optimum to be 

more like draws from the posterior distribution

StanModel

• file: The path to the Stan program. Use  a .stan

extension on file

• model_code: A  character string either containing the 

model definition

• model_name: A string to use as the name of the 

model; (affects the name used in printed messages)



Running Variational Bayes

…

Results are not   trusted by developer  (they are statisticians)



Full rank VB - compared to MCMC

DirectTransformed

MCMC  / VB full rank MCMC  / VB full rank



Mean field VB - compared to MCMC

DirectTransformed

MCMC  / VB mean field MCMC  /  VB mean field 



«Short» MCMC compared to MCMC 

DirectTransformed

MCMC long  / MCMC short MCMC long  / MCMC short



Joint distribution MCMC

DirectTransformed



Joint distribution   VB full rank

DirectTransformed



Joint distribution  VB mean filed

DirectTransformed



STAN

• Possible to do inference with

– MCMC

– VB

• Quite robust/adaptive MCMC sampler

• Still work to be done for VB

– Methodologically weaknesses

– Implementational weaknesses

• Test show

– VB underestimate uncertainty

– VB sensitive to parameterization

– VB can be “far off”

– NUTS is also sensitive to parameterization, but 

can compensate by longer chain 
42

Same STAN program



References

• Slides: Introduction to Stan by Cameron Bracken at University of Colorado 

Boulder February 2015 

• https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

• https://mc-stan.org/docs/2_26/reference-manual

• https://mc-stan.org/docs/2_26/functions-reference

• https://mc-stan.org/rstan/reference/

• https://faculty.ucr.edu/~jflegal/203/STAN_tutorial.pdf

• https://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html

• Betancourt, Michael 2016a. “Diagnosing Suboptimal Cotangent Disintegrations in 

Hamiltonian Monte Carlo. ” arXiv 1604.00695. https://arxiv.org/abs/1604.00695.

• Rubin DB (1981). “Estimation in Parallel Randomized Experiments.” Journal of 

Educational Statistics, 6, 377–400

43

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://mc-stan.org/docs/2_26/reference-manual
https://mc-stan.org/docs/2_26/functions-reference
https://mc-stan.org/rstan/reference/
https://faculty.ucr.edu/~jflegal/203/STAN_tutorial.pdf
https://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html
https://arxiv.org/abs/1604.00695

