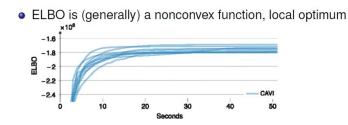

Det matematisk-naturvitenskapelige fakultet

STK-4051/9051 Computational Statistics Spring 2021 Software for Bayesian Inference


Instructor: Odd Kolbjørnsen, oddkol@math.uio.no

Det matematisk-naturvitenskapelige fakultet

CAVI: Coordinate ascent variational inference

Software

- There is always an existing software that "does your job"
- Even if the software does not do exactly what you want maybe it is good enough (cost benefit)
- The challenge is to figure out how this works (and how you can make it do what you want)
- Reasons **not** to make your own computer code:
 - existing code is tested (less bugs)
 - existing code is optimized (speed)
 - often related to publications easier to get others to "accept it"
- Reasons to make your own computer code:
 - understand the methodology better
 - improve/develop existing methodology
 - combining with other techniques
 - compete with existing computer code
 - because you have too much spare time

Det matematisk-naturvitenskapelige fakultet

Software for Bayesian inference

- MCMC (<u>https://en.wikipedia.org/wiki/Probabilistic_programming</u>)
 - WinBUGS

BUGS = Bayesian inference Using Gibbs Sampler

- OpenBUGS
- JAGS (Just Another Gibbs Sampler)
- TensorFlow Probability
- R-STAN (Hamiltonian MC)
- Approximation
 - R-STAN (Variational Inference)
 - TensorFlow Probability (Variational Inference)
 - R-INLA (Integrated Nested Laplace Approximations)

Det matematisk-naturvitenskapelige fakultet

What is Stan?

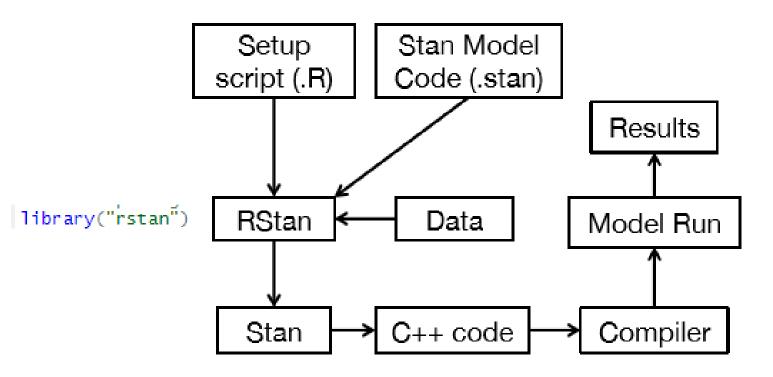
"A probabilistic programming language implementing full **Bayesian statistical inference with MCMC sampling** (NUTS, HMC) and penalized maximum likelihood estimation with Optimization (L-BFGS)"

"Stanislaw Ulam, namesake of Stan and co-inventor Monte Carlo methods shown here holding the Fermiac, Enrico Fermi's physical Monte Carlo simulator for neutron diffusion." (image from the Stan manual)

Det matematisk-naturvitenskapelige fakultet

What does stan do?

- Samples from the posterior distribution (if your model is specified correctly)
- "Fits" bayesian models
- Empowers you to write your own Bayesian models, it's much easier than you think!


No U-Turn Sampler

Automatic Step Size and Number Adaptation

"Adaptive Hamiltonian MC"

How things are built together

Stan is a library with a number of interfaces, we will use the R interface called RStan.

Det matematisk-naturvitenskapelige fakultet

What does a stan call do in R?

- The stan function does all of the work of fitting a Stan model and returning the results as an instance of stanfit.
- The steps are roughly as follows:
 - Translate the Stan model to C++ code. (stanc)
 - Compile the C++ code into a binary shared object, which is loaded into the current R session (an object of S4 class stanmodel is created). (stan_model)
 - Draw samples and wrap them in an object of S4 class stanfit. (sampling)
- The returned object can be used with methods such as print, summary, and plot to inspect and retrieve the results of the fitted model.
- stan can also be used to sample again from a fitted model under different settings (e.g., different iter, data, etc.) by using the fit argument to specify an existing stanfit object. In this case, the compiled C++ code for the model is reused.
- Stan keeps track of what he has already compiled, if you change file you get: hash mismatch so recompiling; make sure Stan code ends with a blank line (not an error)

What does a stan call do in R?

fit = stan(file ='8schools.stan', data = schools_dat)

- The stan function does all of the work of fitting a Stan model and returning the results as an instance of stanfit.
- The steps are roughly as follows:
 - Translate the Stan model to C++ code. (stanc)
 - Compile the C++ code into a binary shared object, which is loaded into the current R session (an object of S4 class stanmodel is created). (stan_model)
 - Draw samples and wrap them in an object of S4 class stanfit. (sampling)
- The returned object can be used with methods such as print, summary, and plot to inspect and retrieve the results of the fitted model.
- stan can also be used to sample again from a fitted model under different settings (e.g., different iter, data, etc.) by using the fit argument to specify an existing stanfit object. In this case, the compiled C++ code for the model is reused.
- Stan keeps track of what he has already compiled, if you change file you get: hash mismatch so recompiling; make sure Stan code ends with a blank line (not an error)

Meta analysis of treatment effect in 8 schools

- Effect of coaching program for SAT-V (Scholastic Aptitude Test - Verbal)
- Data analyzed at each school separately to derive:
 - Estimated treatment effect (Treatment=Special preparation)
 - Standard error of the treatment effect
- Analysis of data at each school adjust for PSAT (initial level of students)
- By pooling data across experiments we can improve all estimates
- Is the pooling justified or is there an effect of "better" teaching at schools that does the best job
 - If so we should look to the best school to investigate what they did differently (~right)

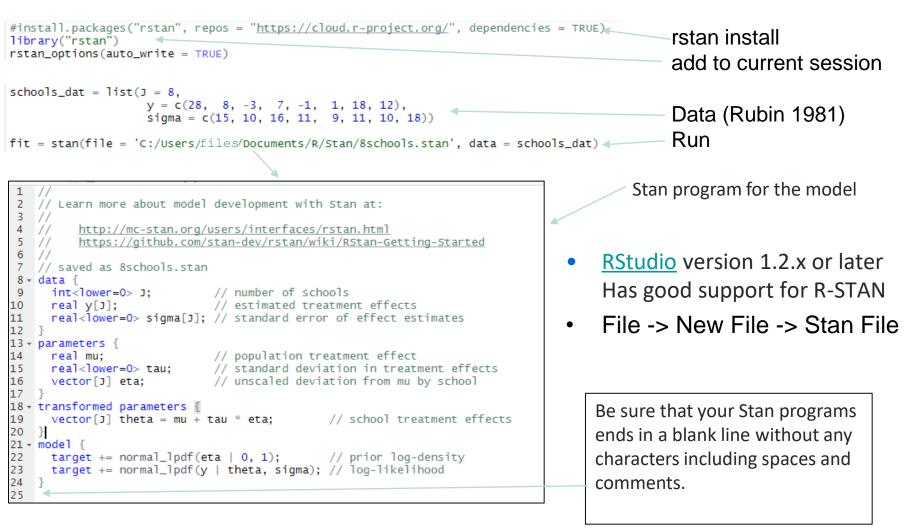
Det matematisk-naturvitenskapelige fakultet

Data from Rubin (1981)

Journal of Educational Statistics Winter, 1981, Volume 6, Number 4, pp. 377-400

TABLE 1

Effects of Special Preparation on SAT-V Scores in Eight Randomized Experiments


	Number of	Students	Estinated Treatment	Standard Error of Effect	Residual
School	Treatment	Control	Effect	Estinace	Variance
*	28	22	28.39	14.9	2415
8	39	40	7.94	10.2	1880
с	22	17	-2.75	16.3	2168
D	48	43	6.82	11.0	2612
ε	25	74	64	9.4	1623 ^a
¥	37	35	. 63	11.4	2046 ^a
G	24	70	18.01	10.4	1841
н	16	19	12.16	17.6	2314

^aRegression includes a quadratic term for PSAT-V

Code on webpage: 8schools.r, 8schools.stan, 8schoolsDirect.stan

Det matematisk-naturvitenskapelige fakultet

Running Stan in RStudio

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Content of .stan file

- Data
 - Real numbers with constraints
 - y, σ
- Transformed data: (not a good name)
 - Real numbers and equations executed once
 - Typically fixed hyper parameters
 - alpha = 1, beta = 1
 - Any variable that is defined wholly in terms of data or transformed data should be declared and defined in the transformed data block.
- Parameter
 - The random variables we will sample
 - $\quad \pmb{\eta} = (\eta_1, \dots, \eta_p), \ \mu, \tau$
- Transformed parameters
 - $\quad x_i = \tau \cdot \eta_i + \mu$

Prior of mu and tau are not defined in model

=> Improper prior: $f(\mu, \tau) \propto 1$

- Model
 - Prior: $p(\boldsymbol{\eta}, \boldsymbol{\mu}, \boldsymbol{\tau})$
 - Likelihood: $p(\mathbf{y}|\mathbf{x}, \mu, \tau)$
- Generated quantities

$$- h(\mathbf{x}, \mu, \tau)$$

$$E[h(\mathbf{x},\mu,\sigma)|\mathbf{y}] = \int_{\mathbf{z}} h(\mathbf{x},\mu,\tau)p(\mathbf{x},\mu,\tau|\mathbf{y})d\mathbf{x}d\mu d\sigma$$

.

Det matematisk-naturvitenskapelige fakultet

No need to truncate priors, do that in the parameter bounds

 BAD: setting constraints on parameters but using a prior with other constraints

```
parameters{
      real alpha; //implies no constraints
  }
  model{
      alpha ~ uniform(0,1);
  }
► GOOD::
  parameters{
      real <lower=0,upper=1> alpha;
  }
  model{
      #alpha ~ uniform(0,1); // default uniform priors
  }
```

Det matematisk-naturvitenskapelige fakultet

Model

https://mc-stan.org/docs/2_26/functions-reference/

function	outcome	e suffix	11 Binary Distributions			
log probability mass function	discrete	_lpmf	12 Bounded Discrete Distributions			
log probability density function	continuou	us _lpdf	12 Dounded Discrete Distributions			
log cumulative distribution function	any	_lcdf	13 Unbounded Discrete Distributions			
log complementary cumulative distribution fu	nction any	_lccdf	14 Multivariate Discrete Distributions			
random number generator	any	_rng	Continuous Distributions			
For example, normal_lpdf is the log of the normal_lpdf	rmal probability	density function (pdf)	15 Unbounded Continuous Distributi			
The notation			16 Positive Continuous Distributions			
y ~ normal(mu, sigma);						
y ~ Hormar(mu, Sigma),	18 Continuous Distributions on [0, 1]					
provides the same (proportional) contribution to the m	19 Circular Distributions					
increment,			20 Bounded Continuous Distributions			

target += normal_lpdf(y | mu, sigma);

In both cases, the effect is to add terms to the target log density. The only difference is that the example with the sampling (~) notation drops all additive constants in the log density; the constants are not necessary for any of Stan's sampling, approximation, or optimization algorithms.

21 Distributions over Unbounded Vec... 22 Simplex Distributions 23 Correlation Matrix Distributions 24 Covariance Matrix Distributions

Det matematisk-naturvitenskapelige fakultet

Vectorization of model conditional independence assumed

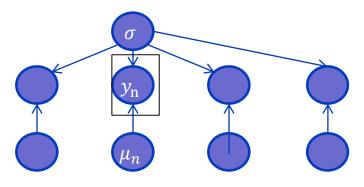
ll = normal_lpdf(y | mu, sigma);

is just a more efficient way to write

With the same arguments, the vectorized sampling statement

y ~ normal(mu, sigma);

 \odot


 \bigcirc

 \odot

has the same effect on the total log probability as

```
for (n in 1:N)
y[n] ~ normal(mu[n], sigma);
```

Conditional independence $p(y_n | \mathbf{y}_{-n}, \boldsymbol{\mu}, \sigma) = p(y_n | \mu_n, \sigma)$

- Dependency structure:
 - Built in:
 - MultiNormal
 - Hidden Markov models
 - Wishart/Inverse Wishart
 - Program it

Tip about priors

- No need to use conjugate priors
- Unlike BUGS (or other Gibbs based samplers), avoid super vauge priors if you can, i.e. inv_gamma(0.1,0.1)
- When in doubt, use a normal prior.
- The Stan mailing list is very active

The Stan Forums (mc-stan.org)

UiO **Solution** Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Stan MCMC

parameters

stan(file, model_name = "anon_model", model_code = "", fit = NA, data = list(), pars = NA, chains = 4, iter = 2000, warmup = floor(iter/2), thin = 1, init = "random", seed = sample.int(.Machine\$integer.max, 1), algorithm = c("NUTS", "HMC", "Fixed_param"),

```
... =
```

Specification of initial values

- File name for diagnostics
- Print out in R console

Save warm up

....)

Number of cores to use

Call to other than default libraries

Parameters to control the sampler's behavior.

file: The path to the Stan program. Use a .stan extension model_code: A character string (or variable) containing the model definition

fit: An instance of S4 class stanfit derived from a previous fit; Time for recompiling the C++ code for the model can be saved.

- model_name: A string to use as the name of the model; (affects the name used in printed messages),
- data: A named list or environment providing the data for the model, or a character vector for all the names of objects to use as data.
- pars: A character vector specifying parameters of interest to be saved(or not). The default is to save all parameters from the model.
- include: include or exclude the parameters given by the pars
 argument
 - Iter: total number of iterations (including warmup). The default is 2000.
- warmup: The number of samples in warmup (aka burnin) (also controls the number of iterations for which adaptation is run)
- chains: The number of Markov chains.
- thin: A positive integer specifying the period for saving samples.
- algorithm
 - "NUTS", which is the No-U-Turn sampler variant of Hamiltonian Monte Carlo (Hoffman and Gelman 2011, Betancourt 2017).
 - "HMC" (Hamiltonian Monte Carlo),
 - "Fixed_param" no sampling is performed (e.g., for simulating with in the generated quantities block).

Det matematisk-naturvitenskapelige fakultet

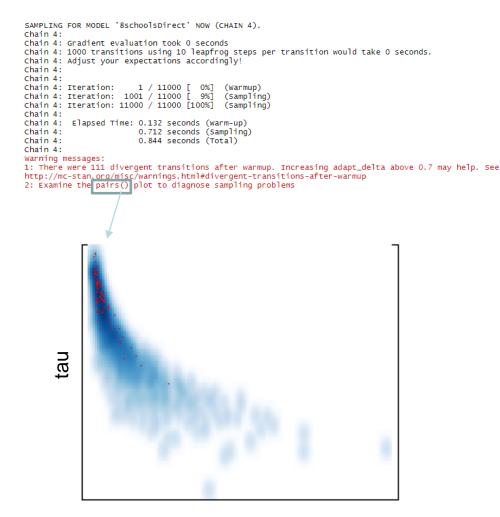
Running Stan

N=10000

fit1 = stan(file = '8schools.stan', data = schools_dat, iter=1.1*N, warmup=0.1*N, thin=N/1000, chains=4, seed=231171, refresh=10000)

```
SAMPLING FOR MODEL '8schools' NOW (CHAIN 4)
Chain 4:
Chain 4: Gradient evaluation took 0 seconds
chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration:
                     1 / 11000 [ 0%]
                                         (Warmup)
Chain 4: Iteration: 1001 / 11000 [ 9%]
                                         (Sampling)
Chain 4: Iteration 11000 / 11000 [100%]
                                         (Sampling)
chain 4.
Chain 4: Elapsed Time: 0.074 seconds (Warm-up)
                      0.703 seconds (Sampling)
Chain 4:
Chain 4:
                       0.777 seconds (Total)
Chain 4:
Warning messages:
                                                                                     may help. See
1: There were 12 divergent transitions after warmup. Increasing adapt_delta above 0.8
http://mc-stan.org/misc/warnings.html#divergent-transit
2: Examine the pairs() plot to diagnose sampling problems
```

fit1 = stan(file = '8schools.stan', data = schools_dat, iter=1.1*N, warmup=0.1*N, thin=N/1000, chains=4, seed=231171, refresh=10000, control=list(adapt_delta=0.95))


```
SAMPLING FOR MODEL '8schools' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 0 seconds
chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration:
                        1 / 11000 [
                                      0%]
                                           (Warmup)
Chain 4: Iteration: 1001 / 11000 [
                                     9%]
                                           (Sampling)
Chain 4: Iteration: 11000 / 11000 [100%]
                                           (Sampling)
Chain 4:
Chain 4: Elapsed Time: 0.115 seconds (Warm-up)
Chain 4:
                        0.952 seconds (Sampling)
Chain 4:
                        1.067 seconds (Total)
Chain 4:
>
```

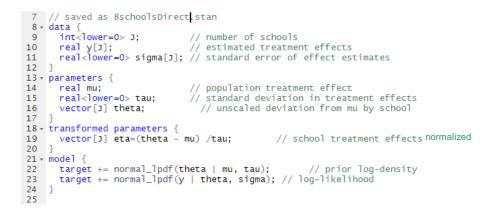
 \odot

 \odot

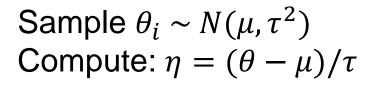
Det matematisk-naturvitenskapelige fakultet

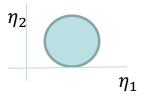
Runtime Reported divergence

- Divergence: the simulated Hamiltonian trajectory does not conserve energy. (i.e. depart from the true trajectory)
- Limits the ability to explore the posterior distribution.
 (can cause irreducible issues)
- When this divergence is too high, the simulation has gone off the rails and cannot be trusted



log posterior


Det matematisk-naturvitenskapelige fakultet


The effect of clever transformations

```
7 // saved as 8schools.stan
 8 - data {
                              // number of schools
9
      int<lower=0> J:
10
     real y[J];
                              // estimated treatment effects
     real<lower=0> sigma[]; // standard error of effect estimates
11
12 }
13 - parameters {
14
     real mu;
                              // population treatment effect
                              // standard deviation in treatment effects
15
      real<lower=0> tau;
                              // unscaled deviation from mu by school
16
     vector[J] eta;
17 }
18 - transformed parameters {
19
     vector[J] theta = mu + tau * eta;
                                               // school treatment effects
20 }
21 - model {
22
     target += normal_lpdf(eta | 0, 1);
                                               // prior log-density
23
     target += normal_lpdf(y | theta, sigma); // log-likelihood
24
25
```


Sample $\eta_i \sim N(0,1)$ Compute: $\theta = \mu + \tau \cdot \eta$

Identical models. The difference is correlations vs not

recap Exercise 42 vs 39

Det matematisk-naturvitenskapelige fakultet

Running two models

SAMPLING FOR MODEL '8schools' NOW (CHAIN 4). Chain 4: Chain 4: Gradient evaluation took 0 seconds Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. Chain 4: Adjust your expectations accordingly! Chain 4: Chain 4: Chain 4: Iteration: 1 / 11000 [0%] (Warmup) SAMPLING FOR MODEL '8schoolsDirect' NOW (CHAIN 4). Chain 4: Iteration: 1001 / 11000 [9%] (Sampling) Chain 4: Chain 4: Iteration: 11000 / 11000 [100%] (Sampling) Chain 4: Gradient evaluation took 0 seconds Chain 4: Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. Chain 4: Elapsed Time: 0.088 seconds (Warm-up) Chain 4: Adjust your expectations accordingly! Chain 4: 0.789 seconds (Sampling) Chain 4: Chain 4: 0.877 seconds (Total) Chain 4: Chain 4: Chain 4: Iteration: 1 / 11000 [0%] (Warmup) > | Chain 4: Iteration: 1001 / 11000 [9%] (Sampling) Chain 4: Iteration: 11000 / 11000 [100%] (Sampling) Chain 4: No reported errors ! Chain 4: Elapsed Time: 0.142 seconds (Warm-up) Chain 4: 2.068 seconds (Sampling) Chain 4: 2.21 seconds (Total) Chain 4: Warning messages: 1: There were 96 divergent transitions after warmup. Increasing adapt_delta above 0.9 may help. See

http://mc-stan.org/misC/warnings.html#divergent-transitions-after-warmup
2: There were 1 chains where the estimated Bayesian Fraction of Missing Information was low. See
http://mc-stan.org/misc/warnings.html#bfmi-low

3: Examine the pairs() plot to diagnose sampling problems

4: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable. Running the chains for more iterations may help. See http://mc-stan.org/misc/warnings.html#tail-ess

Problem with:

divergence,

Effective sample size

Bayesian Fraction of Missing Information (BFMI)

BFMI
$$\approx \widehat{\text{BFMI}} \equiv \frac{\sum_{n=1}^{N} (E_n - E_{n-1})^2}{\sum_{n=0}^{N} (E_n - \bar{E})^2}.$$

Related to lag 1 correlation of log posterior

Inference for Stan model: 8schools.

Det matematisk-naturvitenskapelige fakultet

Result of chain:

post-warr	nup drav	vs per cr	iain=.	1000, 10	ocal pos	st-warm	up draws	5=4000.		
	mean	se mean	sd	2.5%	25%	50%	75%	97.5%	n eff	Rhat
mu	7.86			-2.47	4.71	7.85	11.18		2977	1
tau	6.58			0.24	2.36	5.20	9.12	20.78	3247	1
eta[1]	0.37	0.02	0.94	-1.52	-0.25	0.39	1.04	2.16	3870	1
eta[2]	0.02	0.01	0.88	-1.76	-0.56	0.02	0.61	1.72	3988	1
eta[3]	-0.16	0.02	0.93	-1.97	-0.78	-0.16	0.45	1.70	3699	1
eta[4]	-0.02	0.01	0.89	-1.78	-0.60	-0.04	0.55	1.77	3990	1
eta[5]	-0.36	0.01	0.87	-2.07	-0.92	-0.37	0.18	1.41	3746	1
eta[6]	-0.24	0.01	0.88	-1.95	-0.83	-0.25	0.36	1.52	3931	1
eta[7]	0.34	0.01	0.91	-1.47	-0.25	0.34	0.95	2.08	3999	1
eta[8]	0.05	0.01	0.93	-1.83	-0.57	0.06	0.66	1.87	3875	1
theta[1]	11.31	0.14	8.35	-2.47	5.90	10.18	15.62	31.51	3704	1
theta[2]	8.00	0.10	6.17	-4.40	4.12	7.91	11.85	20.76	3810	1
theta[3]	6.32	0.13	7.85	-11.93	2.37	6.83	10.93	20.94	3905	1
theta[4]	7.71	0.10	6.43	-5.16	3.83	7.64	11.67	20.97	3920	1
theta[5]	5.02	0.11	6.42	-9.50	1.54	5.45	9.28	16.41	3651	1
theta[6]	6.06	0.11	6.70	-8.84	2.30	6.35	10.26	18.71	4001	1
theta[7]	10.65	0.11	6.85	-1.14	6.00	9.98	14.36	26.34	3798	1
theta[8]	8.40							26.74	3869	1
1p	-39.56	0.04	2.66	-45.35	-41.18	-39.36	-37.64	-35.12	3897	1
	4 chains post-warn tau eta[1] eta[2] eta[4] eta[5] eta[6] eta[7] eta[8] theta[1] theta[2] theta[3] theta[5] theta[5] theta[6] theta[7] theta[6] theta[7] theta[8]	4 chains, each w post-warmup draw mu 7.86 tau 6.58 eta[1] 0.37 eta[2] 0.02 eta[3] -0.16 eta[4] -0.02 eta[5] -0.26 eta[6] -0.24 eta[6] -0.34 eta[8] 0.05 theta[1] 11.31 theta[2] 8.00 theta[3] 6.32 theta[4] 7.71 theta[5] 5.02 theta[6] 6.06 theta[6] 6.06 theta[7] 10.65	4 chains, each with iter post-warmup draws per ch mean se_mean mu 7.86 0.10 tau 6.58 0.10 eta[1] 0.37 0.02 eta[2] 0.02 0.01 eta[3] -0.16 0.02 eta[4] -0.02 0.01 eta[5] -0.36 0.01 eta[6] -0.24 0.01 eta[7] 0.34 0.01 eta[7] 0.34 0.01 theta[1] 11.31 0.14 theta[2] 8.00 0.10 theta[3] 6.32 0.13 theta[4] 7.71 0.100 theta[5] 5.02 0.111 theta[6] 6.06 0.111 theta[8] 8.40 0.13	4 chains, each with iter=1100 post-warmup draws per chain= mu 7.86 0.10 5.27 tau 6.58 0.10 5.76 eta[1] 0.37 0.02 0.94 eta[2] 0.02 0.01 0.88 eta[3] -0.16 0.02 0.93 eta[4] -0.02 0.01 0.89 eta[5] -0.36 0.01 0.89 eta[6] -0.24 0.01 0.88 eta[7] 0.34 0.01 0.91 eta[8] 0.05 0.01 0.91 eta[8] 0.05 0.01 0.91 eta[4] 11.31 0.14 8.35 theta[2] 8.00 0.10 6.17 theta[3] 6.32 0.13 7.85 theta[4] 7.71 0.10 6.43 theta[5] 5.02 0.11 6.42 theta[6] 6.06 0.11 6.70 theta[7] 10.65 0.11 6.85 theta[8] 8.40 0.13 7.97	post-warmup draws per chain=1000, to mean se_mean sd 2.5% mu 7.86 0.10 5.27 -2.47 tau 6.58 0.10 5.76 0.24 eta[1] 0.37 0.02 0.94 -1.52 eta[2] 0.02 0.01 0.88 -1.76 eta[3] -0.16 0.02 0.93 -1.97 eta[4] -0.20 0.01 0.88 -1.76 eta[5] -0.36 0.01 0.87 -2.07 eta[6] -0.24 0.01 0.88 -1.95 eta[7] 0.34 0.01 0.91 -1.47 eta[8] 0.05 0.01 0.93 -1.83 theta[1] 11.31 0.14 8.35 -2.47 theta[2] 8.00 0.10 6.17 -4.40 theta[3] 6.32 0.13 7.85 -1.40 theta[4] 7.71 0.10 6.	4 chains, each with iter=11000; warmup=1000 post-warmup draws per chain=1000, total post mu 7.86 0.10 5.27 -2.47 4.71 tau 6.58 0.10 5.76 0.24 2.36 eta[1] 0.37 0.02 0.94 -1.52 -0.25 eta[2] 0.02 0.01 0.88 -1.76 -0.56 eta[3] -0.16 0.02 0.93 -1.97 -0.78 eta[4] -0.02 0.01 0.89 -1.78 -0.60 eta[5] -0.24 0.01 0.89 -1.78 -0.60 eta[6] -0.24 0.01 0.89 -1.78 -0.60 eta[6] -0.24 0.01 0.89 -1.78 -0.62 eta[7] 0.34 0.01 0.91 -1.47 -0.25 eta[8] 0.05 0.01 0.93 -1.83 -0.57 theta[1] 11.31 0.14 8.35 -2.47 5.90 theta[2] 8.00 0.10 6.17 -4.40 4.12 theta[3] 6.32 0.13 7.85 -11.93 2.37 theta[4] 7.71 0.10 6.43 -5.16 3.83 theta[5] 5.02 0.11 6.42 -9.50 1.54 theta[6] 6.06 0.11 6.70 -8.84 2.30 theta[7] 10.65 0.11 6.78 -1.14 6.00	4 chains, each with iter=11000; warmup=1000; thin- post-warmup draws per chain=1000, total post-warmu mean se_mean sd 2.5% 25% 50% mu 7.86 0.10 5.27 -2.47 4.71 7.85 tau 6.58 0.10 5.76 0.24 2.36 5.20 eta[1] 0.37 0.02 0.94 -1.52 -0.25 0.39 eta[2] 0.02 0.01 0.88 -1.76 -0.56 0.02 eta[3] -0.16 0.02 0.93 -1.78 -0.60 -0.04 eta[4] -0.02 0.01 0.89 -1.78 -0.60 -0.04 eta[5] -0.36 0.01 0.87 -2.07 -0.92 -0.37 eta[6] -0.24 0.01 0.88 -1.95 -0.83 -0.25 eta[7] 0.34 0.01 0.91 -1.47 -0.25 0.34 eta[8] 0.05 0.01 0.93 -1.83 -0.57 0.06 theta[1] 11.31 0.14 8.35 -2.47 5.90 10.18 theta[2] 8.00 0.10 6.17 -4.40 4.12 7.91 theta[3] 6.32 0.13 7.85 -11.93 2.37 6.83 theta[4] 7.71 0.10 6.43 -5.16 3.83 7.64 theta[5] 5.02 0.11 6.42 -9.50 1.54 5.45 theta[6] 6.06 0.11 6.70 -8.84 2.30 6.35 theta[7] 10.65 0.11 6.70 -8.84 2.30 6.35 theta[8] 8.40 0.13 7.97 -6.71 3.88 8.15	4 chains, each with iter=11000; warmup=1000; thin=10; post-warmup draws per chain=1000, total post-warmup draws mean se_mean sd 2.5% 25% 50% 75% mu 7.86 0.10 5.27 -2.47 4.71 7.85 11.18 tau 6.58 0.10 5.76 0.24 2.36 5.20 9.12 eta[1] 0.37 0.02 0.94 -1.52 -0.25 0.39 1.04 eta[2] 0.02 0.01 0.88 -1.76 -0.56 0.02 0.61 eta[3] -0.16 0.02 0.93 -1.97 -0.78 -0.16 0.45 eta[4] -0.02 0.01 0.89 -1.78 -0.60 -0.04 0.55 eta[5] -0.36 0.01 0.87 -2.07 -0.92 -0.37 0.18 eta[6] -0.24 0.01 0.88 -1.95 -0.83 -0.25 0.36 eta[7] 0.34 0.01 0.91 -1.47 -0.25 0.34 0.95 eta[8] 0.05 0.01 0.93 -1.83 -0.57 0.06 0.66 theta[1] 11.31 0.14 8.35 -2.47 5.90 10.18 15.62 theta[2] 8.00 0.10 6.17 -4.40 4.12 7.91 11.85 theta[3] 6.32 0.13 7.85 -11.93 2.37 6.83 10.93 theta[4] 7.71 0.10 6.43 -5.16 3.83 7.64 11.67 theta[5] 5.02 0.11 6.42 -9.50 1.54 5.45 9.28 theta[6] 6.06 0.11 6.70 -8.84 2.30 6.35 10.26 theta[7] 10.65 0.11 6.85 -1.14 6.00 9.98 14.36 theta[8] 8.40 0.13 7.97 -6.71 3.88 8.15 12.53	4 chains, each with iter=11000; warmup=1000; thin=10; post-warmup draws per chain=1000, total post-warmup draws=4000. mean se_mean sd 2.5% 25% 50% 75% 97.5% mu 7.86 0.10 5.27 -2.47 4.71 7.85 11.18 18.19 tau 6.58 0.10 5.76 0.24 2.36 5.20 9.12 20.78 eta[1] 0.37 0.02 0.94 -1.52 -0.25 0.39 1.04 2.16 eta[2] 0.02 0.01 0.88 -1.76 -0.56 0.02 0.61 1.72 eta[3] -0.16 0.02 0.93 -1.97 -0.78 -0.16 0.45 1.70 eta[4] -0.02 0.01 0.89 -1.78 -0.60 -0.04 0.55 1.77 eta[5] -0.36 0.01 0.87 -2.07 -0.92 -0.37 0.18 1.41 eta[6] -0.24 0.01 0.88 -1.95 -0.83 -0.25 0.36 1.52 eta[7] 0.34 0.01 0.91 -1.47 -0.25 0.34 0.95 2.08 eta[8] 0.05 0.01 0.91 -1.47 5.00 10.18 15.62 31.51 theta[1] 11.31 0.14 8.35 -2.47 5.90 10.18 15.62 31.51 theta[3] 6.32 0.13 7.85 -11.93 2.37 6.83 10.93 20.94 theta[4] 7.71 0.10 6.43 -5.16 3.83 7.64 11.67 20.97 theta[5] 5.02 0.11 6.42 -9.50 1.54 5.45 9.28 16.41 theta[6] 6.06 0.11 6.70 -8.84 2.30 6.35 10.26 18.71 theta[7] 10.65 0.11 6.85 -1.14 6.00 9.98 14.36 26.34 theta[8] 8.40 0.13 7.97 -6.71 3.88 8.15 12.53 26.74	4 chains, each with iter=11000; warmup=1000; thin=10; post-warmup draws per chain=1000, total post-warmup draws=4000. mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff mu 7.86 0.10 5.77 -2.47 4.71 7.85 11.18 18.19 2977 tau 6.58 0.10 5.76 0.24 2.36 5.20 9.12 20.78 3247 eta[1] 0.37 0.02 0.94 -1.52 -0.25 0.39 1.04 2.16 3870 eta[2] 0.02 0.01 0.88 -1.76 -0.56 0.02 0.61 1.72 3988 eta[3] -0.16 0.02 0.93 -1.97 -0.78 -0.16 0.455 1.70 3699 eta[4] -0.02 0.01 0.89 -1.78 -0.60 -0.04 0.55 1.77 3990 eta[5] -0.36 0.01 0.87 -2.07 -0.92 -0.37 0.18 1.41 3746 eta[6] -0.24 0.01 0.88 -1.95 -0.83 -0.25 0.36 1.52 3931 eta[7] 0.34 0.01 0.91 -1.47 -0.25 0.34 0.95 2.08 3999 eta[8] 0.05 0.01 0.93 -1.83 -0.57 0.06 0.66 1.87 3875 theta[1] 11.31 0.14 8.35 -2.47 5.90 10.18 15.62 31.51 3704 theta[2] 8.00 0.10 6.17 -4.40 4.12 7.91 11.85 20.76 3810 theta[3] 6.32 0.13 7.85 -11.93 2.37 6.83 10.93 20.94 3905 theta[4] 7.71 0.10 6.43 -5.16 3.83 7.64 11.67 20.97 3920 theta[5] 5.02 0.11 6.42 -9.50 1.54 5.45 9.28 16.41 3651 theta[6] 6.06 0.11 6.70 -8.84 2.30 6.35 10.26 18.71 4001 theta[7] 10.65 0.11 6.85 -1.14 6.00 9.98 14.36 26.63 379

samples were drawn using NUTS(diag_e) at Wed Apr 22 18:42:52 2020. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Effective number of samples is consistently high

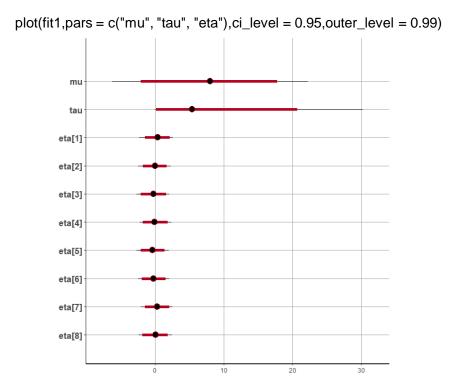

2 pr 1103	COLUMN TO A									
Inference for Stan model: 8schoolsDirect.										
4 chains, each with iter=11000; warmup=1000; thin=10;										
post-warn	post-warmup draws per chain=1000, total post-warmup draws=4000.									
										1
	mean	se_mean	sd	2.5%	25%	50%	7 5%	97.5%	n_eff	Rhat
mu	8.07	0.13	5.24	-2.29	4.72	7.89	11.41	18.56	1742	1.00
tau	7.31	0.18	5.63	0.99	3.21	5.92	9.81	21.43	942	1.01
theta[1]	11.99	0.15	8.65	-2.39	6.55	10.74	16.13	32.66	3462	1.00
theta[2]	7.89	0.11	6.52	-5.34	3.91	7.87	12.09	20.98	3227	1.00
theta[3]	5.97	0.17	8.25	-13.15	1.49	6.57	11.23	21.38	2489	1.00
theta[4]	7.68	0.14	6.89	-6.51	3.56	7.68	12.00	21.15	2306	1.00
theta[5]	4.92	0.17	6.57	-8.87	0.72	5.34	9.34	16.50	1534	1.00
theta[6]	5.81	0.15	7.08	-10.06	1.57	6.18	10.59	18.40	2153	1.00
theta[7]	11.25	0.13	6.85	-1.04	6.58	10.64	15.29	26.21	2722	1.00
theta[8]	8.74	0.14	8.29	-7.44	3.92	8.41	13.44	26.92	3292	1.00
eta[1]	0.45	0.02	0.93	-1.43	-0.14	0.47	1.05	2.26	3602	1.00
eta[2]	-0.06	0.03	0.90	-1.95	-0.62	-0.03	0.50	1.68		1.01
eta[3]	-0.22	0.02	0.91	-1.95	-0.82	-0.24	0.38	1.60	3151	1.00
eta[4]	-0.04	0.02	0.89	-1.78	-0.65	-0.05	0.53	1.74	1924	
eta[5]	-0.40	0.02				-0.40				
eta[6]	-0.29	0.02						1.47	1834	
eta[7]	0.39	0.02							2375	
eta[8]	0.07	0.02				0.07		1.90	2770	
1p	-52.93	0.27	5.40	-62.68	-56.74	-53.27	-49.23	-42.03	397	1.01

samples were drawn using NUTS(diag_e) at Wed Apr 22 18:46:06 2020. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

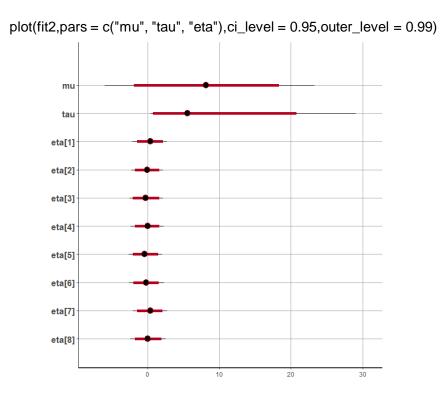
Effective number of samples is variable some low some high Have not investigated full space

Det matematisk-naturvitenskapelige fakultet

Pairs() is specialized in STAN

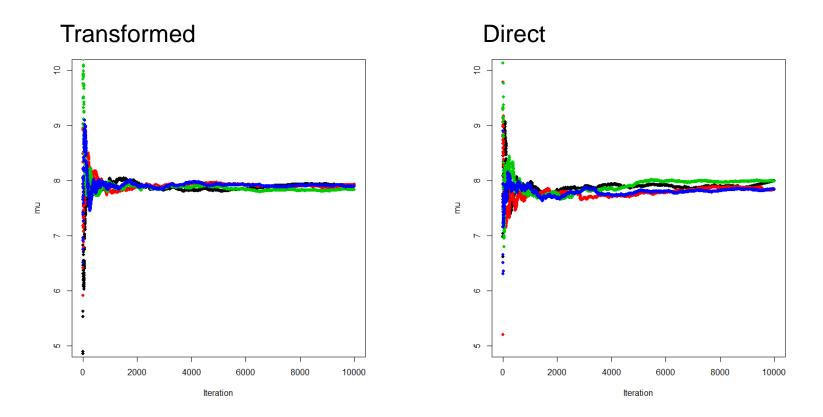


The models are the same but log posterior is different why?

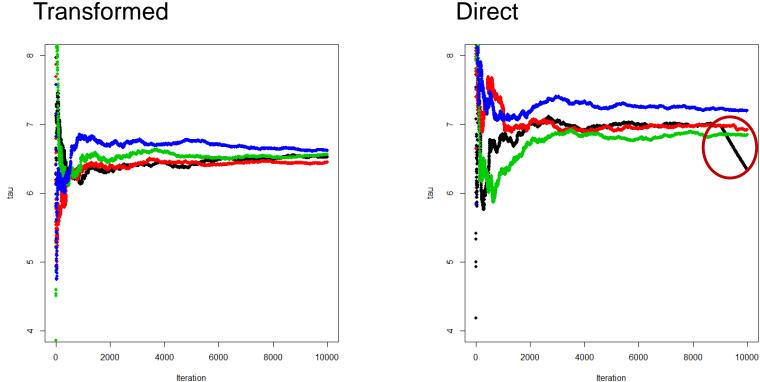

Det matematisk-naturvitenskapelige fakultet

Credibility intervals

Transformed



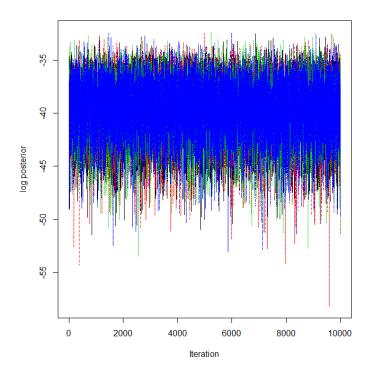
Direct


Det matematisk-naturvitenskapelige fakultet

Convergence for MCMC, cumulative mean mu

Det matematisk-naturvitenskapelige fakultet

Convergence for MCMC, cumulative mean tau

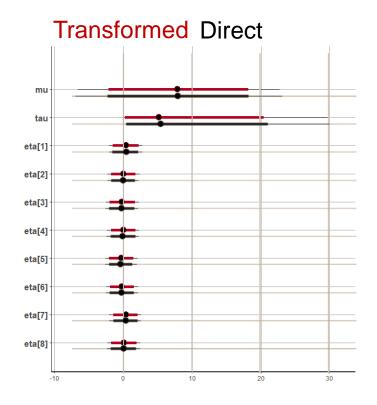


Direct

Det matematisk-naturvitenskapelige fakultet

Likelihood

Transformed



Direct

Det matematisk-naturvitenskapelige fakultet

Result MCMC long

- The Transformed approach has better convergence properties
- In a long run 100000 samples
- The difference between the two chains is not large
- Results
 - The effect of coaching is not significant 5%-level, but has a strong indication
 - The «good» school appears as a «lucky shot»

Det matematisk-naturvitenskapelige fakultet

```
Speeding up Stan models

    Avoid repeated operations

        // 1/alpha is repeated
        for(n in 1:N)
            y[n] ~ exponential(1/alpha * x[n]);

    Vectorization is always faster

        // not vectorized
        for(n in 1:N)
            y[n] ~ normal(beta0 + beta1 * x[n], sigma);
        //vectorized
        y ~ normal(beta0 + beta1 * x, sigma);
     Priors: More informative the better (think better initial
        conditions), use MLE to get initial estimates
```

- Parallization: can run multiple chains if you have multiple cores, but each chain is still serial
- More advanced: Access increment_log_prob directly

Det matematisk-naturvitenskapelige fakultet

Stan tips and tricks

#1 tip: Read the Manual! It is excellent Other things we didn't really talk about:

- Local variables in the model block, can be used to store intermediate results
- Matrices vs arrays, Column vector vs row vector
- Constrained data types
- Functions
- Logical operations/Other types of looping
- Elementwise operators
- Built-in functions
- Print statements
- Missing data
- Prediction
- Discrete variables

Det matematisk-naturvitenskapelige fakultet

Variational Bayes in STAN

- The same STAN program can be used to make inference by variational Bayes
- vb() replace stan()

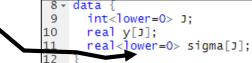
$$E[h(\mathbf{z})|\mathbf{x}] \approx \int_{\mathbf{z}} h(\mathbf{z})q^*(\mathbf{z})d\mathbf{z}$$

$$egin{aligned} q^*(m{z}) &= rgmin \mathcal{D}(m{q}(m{z}),m{p}(m{z}|m{x}))\ q(m{z})\in\mathcal{Q} \end{aligned}$$

UiO **Solution** Matematisk institutt

٠

Det matematisk-naturvitenskapelige fakultet


Variational Bayes in STAN

vb(object, data = list(), pars = NA, include = TRUE, init = 'random', check_data = TRUE, sample_file = tempfile(fileext = '.csv'), algorithm = c("meanfield", "fullrank"), importance_resampling = FALSE, keep_every = 1, ...)

Making a stanmodel

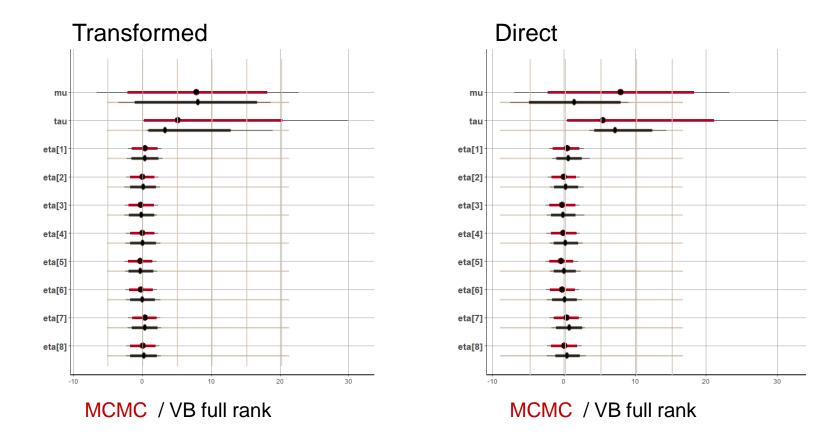
 stan_model(file, model_name = "anon_model", model_code = "", ...)

- object An object of class stanmodel.
- data A named list or environment providing the data for the model
- check_data If TRUE the data will be preprocessed

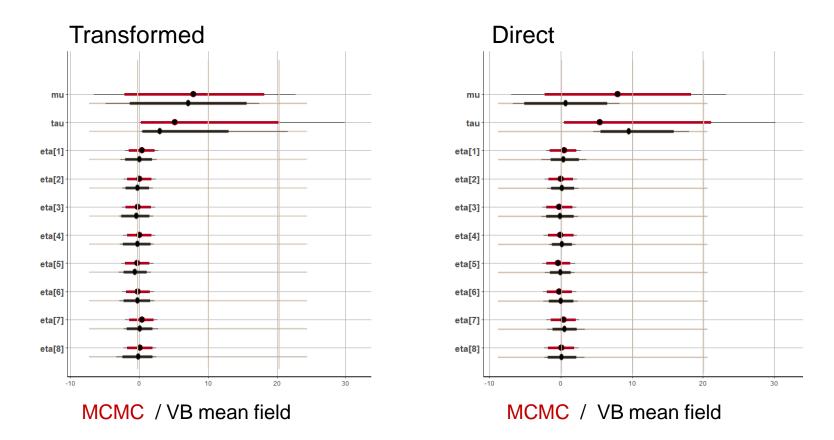
- algorithm
 - "meanfield" uses a fully factorized Gaussian for the approximation
 - "fullrank", uses a Gaussian with a full-rank covariance matrix for the approximation.
- importance_resampling: If TRUE we do importance resampling to adjust the draws at the optimum to be more like draws from the posterior distribution

StanModel

- file: The path to the Stan program. Use a .stan extension on file
- model_code: A character string either containing the model definition
- model_name: A string to use as the name of the model; (affects the name used in printed messages)


Det matematisk-naturvitenskapelige fakultet

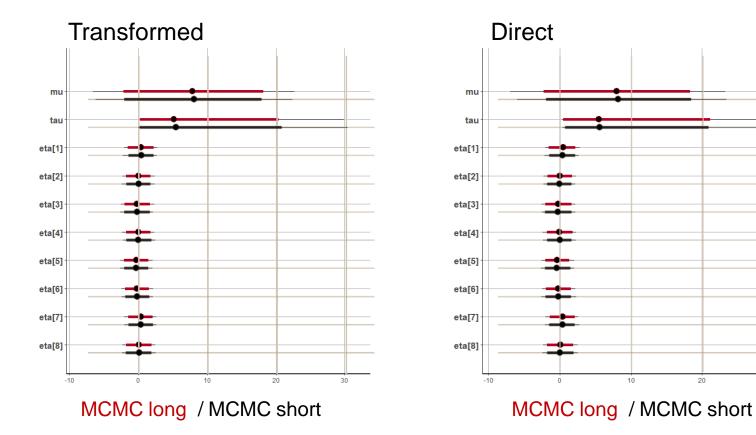
Running Variational Bayes


> fitvb1b= vb(stanModel8s, data = schools_dat,algorithm = "fullrank") > print(fitvb1a) Chain 1: -----Chain 1: EXPERIMENTAL ALGORITHM: Inference for Stan model: 8schools. Chain 1: This procedure has not been thoroughly tested and may be unstable 1 chains, each with iter=1000; warmup=0; thin=1; Chain 1: or buggy. The interface is subject to change. post-warmup draws per chain=1000, total post-warmup draws=1000. Chain 1: -----Chain 1: mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff khat Chain 1: mu 7.41 NaN 3.93 -0.56 4.76 7.43 9.87 15.40 NaN 0.92 Chain 1: 4.19 NaN 3.91 0.64 1.71 3.00 5.03 15.75 NaN 0.89 tau Chain 1: Gradient evaluation took 0 seconds eta[1] 0.32 NaN 0.94 -1.68 -0.28 0.35 0.95 2.10 NaN 0.66 Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. eta[2] -0.07 NaN 0.88 -1.75 -0.65 -0.06 0.52 1.64 NaN 0.80 Chain 1: Adjust your expectations accordingly! Chain 1: eta[3] -0.16NaN 0.93 -1.90 -0.75 -0.16 0.48 1.66 NaN 0.72 Chain 1: eta[4] NaN 0.99 -1.84 -0.57 0.08 0.05 0.69 2.07 NaN 0.84 Chain 1: Begin eta adaptation. eta[5] -0.27 NaN 0.79 -1.81 -0.79 -0.28 0.23 1.33 NaN 0.71 Chain 1: Iteration: 1 / 250 [0%1 (Adaptation) eta[6] -0.18NaN 1.03 -2.15 -0.88 -0.19 0.55 1.83 NaN 0.74 Chain 1: Iteration: 50 / 250 [20%] (Adaptation) eta[7] 0.37 NaN 0.90 -1.35 -0.22 0.38 0.96 2.19 NaN 0.70 Chain 1: Iteration: 100 / 250 [40%] (Adaptation) 0.22 NaN 0.91 -1.51 -0.40 0.21 0.82 2.04 NaN 0.65 eta[8] Chain 1: Iteration: 150 / 250 [60%] (Adaptation) theta[1] 8.79 NaN 6.58 -3.05 4.94 8.43 12.25 22.22 NaN 0.77 Chain 1: Iteration: 200 / 250 [80%] (Adaptation) theta[2] NaN 6.11 -5.59 3.78 7.25 10.74 18.82 NaN 0.81 7.08 Chain 1: Success! Found best value [eta = 1] earlier than expected. theta[3] NaN 6.76 -7.22 3.13 7.25 10.54 18.58 Chain 1: 6.83 NaN 0.72 Chain 1: Begin stochastic gradient ascent NaN 7.49 -7.21 7.55 10.90 23.30 theta[4] 7.65 3.95 NaN 0.74 Chain 1: iter ELBO delta_ELBO_mean delta_ELBO_med notes NaN 5.81 -6.67 3.09 6.42 9.61 16.27 NaN 0.79 theta[5] 6.13 Chain 1: 100 -29.037 1.000 1.000 theta[6] 6.75 NaN 7.13 -7.86 3.27 6.92 10.37 20.69 NaN 0.66 Chain 1: 200 -26.790 0.542 1.000 8.50 11.88 21.51 theta[7] 8.84 NaN 6.41 -2.49 5.18 NaN 0.63 Chain 1: 300 -26.1720.369 0.084 8.34 NaN 6.35 -3.80 4.72 8.25 11.59 22.64 theta[8] NaN 0.63 400 0.279 0.084 Chain 1: -25.9280.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN 0.74 1p___ Approximate samples were drawn using VB(meanfield) at Thu Apr 23 01:46:05 2020. . . . we recommend genuine 'sampling' from the posterior distribution for final inferences! -26.115 0.020 Chain 1: 5200 0.021 Chain 1: 5300 -25.679 0.019 0.018 Chain 1: 5400 -26.180 0.021 0.019 -25.561 0.022 Chain 1: 5500 0.021 Chain 1: 5600 -25.602 0.022 0.021 Chain 1: 5700 -27.570 0.028 0.024 0.024 5800 -25.9330.031 Chain 1: Chain 1: 5900 -25.9510.029 0.024 Chain 1: 6000 -25.604 0.026 0.021 Chain 1: 6100 -25.645 0.023 0.019 6200 -25.851 0.022 0.017 Chain 1: Chain 1: 6300 -25.938 0.021 0.014 6400 -25.794 0.019 0.008 MEDIAN ELBO CONVERGED Chain 1: Chain 1: Chain 1: Drawing a sample of size 1000 from the approximate posterior... Chain 1: COMPLETED recommend genuine 'sampling' from the posterior distribution for final inferences! We

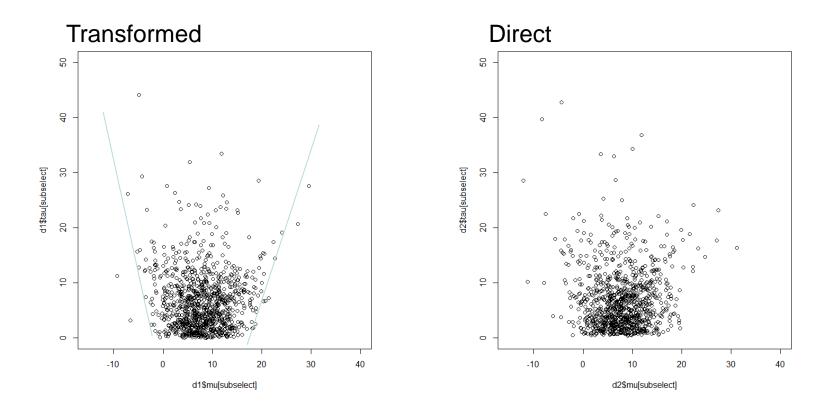
Results are not trusted by developer (they are statisticians)

Full rank VB - compared to MCMC

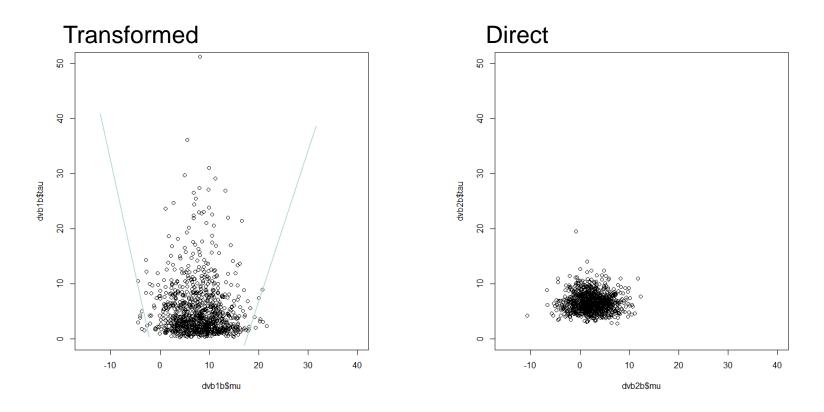
Mean field VB - compared to MCMC

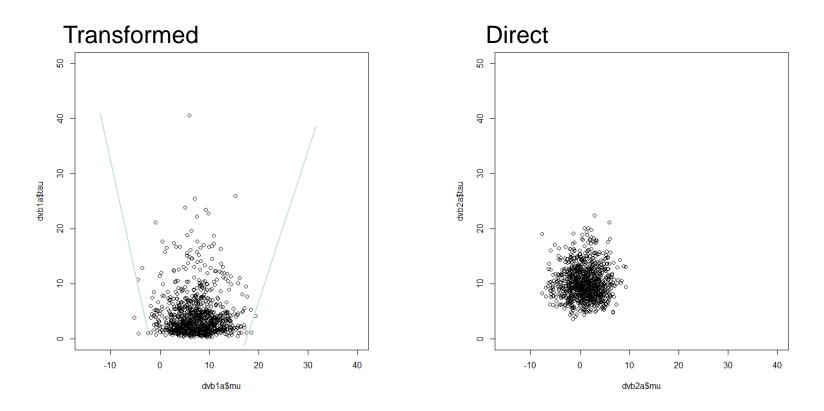


Det matematisk-naturvitenskapelige fakultet


«Short» MCMC compared to MCMC

20


30


Joint distribution MCMC

Joint distribution VB full rank

Joint distribution VB mean filed

Det matematisk-naturvitenskapelige fakultet

STAN

- Possible to do inference with
 - MCMC

– VB

- \geq Same STAN program
- Quite robust/adaptive MCMC sampler
- Still work to be done for VB
 - Methodologically weaknesses
 - Implementational weaknesses
- Test show
 - VB underestimate uncertainty
 - VB sensitive to parameterization
 - VB can be "far off"
 - NUTS is also sensitive to parameterization, but can compensate by longer chain

Det matematisk-naturvitenskapelige fakultet

References

- Slides: Introduction to Stan by Cameron Bracken at University of Colorado Boulder February 2015
- <u>https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started</u>
- <u>https://mc-stan.org/docs/2_26/reference-manual</u>
- <u>https://mc-stan.org/docs/2_26/functions-reference</u>
- <u>https://mc-stan.org/rstan/reference/</u>
- https://faculty.ucr.edu/~jflegal/203/STAN_tutorial.pdf
- <u>https://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html</u>
- Betancourt, Michael 2016a. "Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo." *arXiv* 1604.00695. <u>https://arxiv.org/abs/1604.00695</u>.
- Rubin DB (1981). "Estimation in Parallel Randomized Experiments." Journal of Educational Statistics, 6, 377–400