

### UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

# **Summary STK-4051/9051 Computational Statistics Spring 2021**

Instructor: Odd Kolbjørnsen, oddkol@math.uio.no



### Course structure

- Focus on methods
- Focus on implementing algorithms
  - Will mainly use R, not that efficient
  - For most methods, there exist efficient software
  - Focus on learning through implementation
- Some theory on why and how methods work
  - Compulsory exercise in two parts
- Home exam on the same form as the compulsory exercise

### STK 4051/9051 in one slide

- Optimization ~ Maximum likelihood
  - Continuous space (Gradient)
  - Discrete/combinatorial (Heuristics)
  - Missing/hidden variables (EM)
- Integration ~ Bayesian inference
  - Direct methods low dimensions
  - Importance weight and resampling
    - Variance reduction methods
  - Sequential Monte Carlo
  - Markov chain Monte Carlo
  - Variational Bayes
- Numerical methods within statistics

### **Maximum likelihood Theory**

For independent data:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f(\mathbf{x}_{i}|\boldsymbol{\theta})$$

• Maximum likelihood estimate:  $\hat{\theta}_{ML} = \arg\max_{\theta} L(\theta)$ . Typically easier to work with the log-likelihood:

$$\ell(\theta) = \sum_{i=1}^{n} \log(f(\mathbf{x}_i; \theta))$$

For smooth likelihoods, necessary requirement:

$$\mathbf{s}(\theta) \equiv \ell'(\theta) = \mathbf{0}$$
,  $|\theta|$  equations score function  $\mathbf{J}(\theta) \equiv -\ell''(\theta)$  positive (definite), called observed Fisher information

- Theory:
  - $E[s(\theta)] = 0$
  - $I(\theta) \equiv -E[\ell''(\theta)] = E[J(\theta)] = Var[s(\theta)]$ , expected Fisher information
  - For large *n* (and some regularity assumptions)

$$\hat{\theta}_{ML} \approx N(\theta, \mathbf{I}^{-1}(\hat{\theta}_{ML})) \approx N(\theta, \mathbf{J}^{-1}(\hat{\theta}_{ML}))$$

## **Continuous space**

Gradient based methods

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{B}\boldsymbol{s}(\boldsymbol{\theta}^{(t)})$$

- Newton:  $\mathbf{B} = \mathbf{J}(\boldsymbol{\theta}^{(t)})^{-1}$
- Fisher scoring,  $\mathbf{B} = \mathbf{I}(\boldsymbol{\theta}^{(t)})^{-1} = \mathrm{E}(\mathbf{J}(\boldsymbol{\theta}^{(t)}))^{-1} = \mathrm{Var}(\mathbf{s}(\boldsymbol{\theta}^{(t)}))^{-1}$
- Secant, **B**: discrete approximation of  $J(\boldsymbol{\theta}^{(t)})^{-1}$
- BFGS, (Quasi newton, optim in R)  $\mathbf{B} = -\alpha \mathbf{M}$

[Broyden-Fletcher-Goldfarb-Shanno]

- Ascent,  $\mathbf{B} = \alpha \mathbf{I}$ ,  $\alpha > 0$ , but small enough
- Gauss Newton, linearize around theta, update using linear regression
- Gauss Seidel: Iterate one coordinate at the time



- Other alternatives
  - Fixed point iterations (can also be gradient based) contraction
  - Nelder Mead (optim in R)
- Know when to stop (and why you stopped)
  - Absolute and relative error / Max iteration
  - No guarantees [except for linear equations]}



#### UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

### Continuous optimization «special cases»

Iterative reweighted least squares (IRLS)

$$\boldsymbol{\beta}^{(k+1)} = \min_{\boldsymbol{\beta}} \sum w_i(\boldsymbol{\beta}^{(k)}, \boldsymbol{x}_i) (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}_i)^2$$

- Extensively used in Generalized Linear Models
- Method of multipliers (constrained optimization)
  - minimize<sub>x</sub> { f(x) }, subject to Ax = b
  - minimize<sub> $x,\lambda$ </sub>  $\left\{ f(x) + \frac{\rho}{2} ||Ax b||^2 + \lambda^T (Ax b) \right\}$



Alternating Direction Method of Multipliers (ADMM)

minimize 
$$\{f(x) + g(z)\}$$
  
subject to  $Ax + Bz = c$ 

For i=1 «until convergence»

1. 
$$x^{(i)} = \operatorname{argmin} \left\{ f(x) + \frac{\rho}{2} ||Ax + Bz^{(i-1)} - c||^2 + \lambda^{(i-1)T} (Ax + Bz^{(i-1)} - c) \right\}$$

2. 
$$\mathbf{z}^{(i)} = \operatorname{argmin} \left\{ g(\mathbf{z}) + \frac{\rho}{2} \left\| \mathbf{A} \mathbf{x}^{(i)} + \mathbf{B} \mathbf{z} - \mathbf{c} \right\|^2 + \lambda^{(i-1)T} (\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{z} - \mathbf{c}) \right\}$$

3. 
$$\lambda^{(i)} = \lambda^{(i-1)} + \rho \left( A x^{(i)} + B z^{(i)} - c \right)$$

Used for solving LASSO

### **Combinatorial optimization**

- There are problems that are too difficult to solve exactly (NP hard)
  - Model selection  $2^p$  options  $(p = 100 = > 1.27 \cdot 10^{30})$
- We use heuristics when no algorithm guaranties a global maximum (within a time frame)
- Heuristics: Algorithms that find a good local optima
  - Local search
    - greedy, local optimum, use many starting points
  - Simulated annealing
    - accept proposal  $\theta^*$  with probability  $\min(1, \exp\{[f(\theta^{(t)}) f(\theta^*)]/\tau_j\}$
    - Cooling schedule:  $au_j$  temperature &  $m_j$  number of repeats of  $au_j$
  - Tabu algorithm
    - Allow downhill move when no uphill move is possible
    - Make some moves temporarily forbidden or tabu
  - Genetic algorithm- survival of the fittest
    - Use a population of solutions, paired to get next generation
    - Selection of parents/ Genetic operators / Mutations

Local neighborhood •  $\mathcal{N}(oldsymbol{ heta}^{(t)})$ 

#### UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

## **EM** algorithm

- Y = (X, Z) complete X observed **Z** missing Have  $f_Y(y|\boldsymbol{\theta})$
- Data are missing or "hidden", "augmented"
- If complete data, we want to maximize  $\log L(\theta|Y)$
- In presence of missing data  $\log L(\theta|Y)$  is unknown

Want 
$$\max_{\boldsymbol{\theta}} f_X(\boldsymbol{x}|\boldsymbol{\theta})$$

Want 
$$\max_{\boldsymbol{\theta}} f_X(\boldsymbol{x}|\boldsymbol{\theta})$$
  $f_X(\boldsymbol{x}|\boldsymbol{\theta}) = \int_{Z} f_Y(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta}) dz$   $f_X(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{f_Y(\boldsymbol{y}|\boldsymbol{\theta})}{f_{Z|X}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta})}$ 

$$f_X(x|\boldsymbol{\theta}) = \frac{f_Y(y|\boldsymbol{\theta})}{f_{z|x}(z|x,\boldsymbol{\theta})}$$

- We maximize:
  - The expected value of the log likelihood given observations and current estimate of parameters,

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = E[\log L(\boldsymbol{\theta}|\boldsymbol{Y}) \mid \boldsymbol{x}, \boldsymbol{\theta}^{(t)}] = E[\log f_{\boldsymbol{Y}}(\boldsymbol{y}|\boldsymbol{\theta}) \mid \boldsymbol{x}, \boldsymbol{\theta}^{(t)}] = \int_{\boldsymbol{z}} \log[f_{\boldsymbol{Y}}(\boldsymbol{y}|\boldsymbol{\theta})] f_{\boldsymbol{z}|\boldsymbol{x}}(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\theta}^{t}) d\boldsymbol{z}$$

- Algorithm:
  - 1. E-step: Compute  $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$
  - 2. M-step: Maximize  $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$  wrt  $\boldsymbol{\theta}$  to obtain  $\boldsymbol{\theta}^{(t+1)}$ .
  - 3. Return to E-step unless a stopping criterion has been met

#### UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

### **EM Algorithm**

- Mixture Gaussian clustering/ Hidden Markov Model
- EM in exponential family

s(y) is a sufficient statistic:

 Compute the conditional expectation of the sufficient statistics given the observed data under current estimate

E-step  $\mathbf{s}^{(t)} = E[\mathbf{s}(\mathbf{Y})|\mathbf{x}; \mathbf{\theta}^{(t)}]$ 

- Find the parameter value which matches M-step  $\theta^{(t+1)}$  solves  $E[s(Y)|\theta] = s^{(t)}$  the unconditional expectation of the complete data to this value
- Uncertainty
  - Bootstrapping
  - Numerical Differentiation
  - Empirical information  $I(\theta) = \text{var}[\ell'(\theta|X)]$ 
    - · compute this as the variance of the score functions
  - Missing information  $J_X(\theta) = J_Y(\theta) J_{Z|X}(\theta)$

Observed information Complete information Missing information

### Stochastic gradient algorithm

1. Gradient descent/ascent for optimizing  $\ell(\theta)$ :

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \alpha \ell'(\boldsymbol{\theta}^t)$$

- 2.  $\ell'(\theta)$  may be costly to evaluate
- 3.  $\hat{\ell}'(\theta)$  easier (e.g subsample of data)
- 4. Stochastic gradient algorithm

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \alpha_t \hat{\ell}'(\boldsymbol{\theta}^t)$$

Convergence results if

$$\sum_t \alpha_t = \infty$$
,  $\sum_t \alpha_t^2 < \infty$ 

Det matematisk-naturvitenskapelige fakultet

## Stochastic gradient decent

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha^{(t)} \boldsymbol{M}^{-1} \boldsymbol{Z} (\boldsymbol{\theta}^{(t)}, \boldsymbol{\phi}^{(t)}) \qquad \boldsymbol{Z} (\boldsymbol{\theta}^{(t)}, \boldsymbol{\phi}^{(t)}) \approx \boldsymbol{g} (\boldsymbol{\theta}^{(t)})$$
Stochastic element gradient

• Requirements on the sequence  $\{\alpha_t\}$ :

$$\alpha_t > 0$$
 (A-1)

$$\sum_{t=2}^{\infty} \frac{\alpha_t}{\alpha_1 + \dots + \alpha_{t-1}} = \infty \tag{A-2}$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty \tag{A-3}$$

Note that (A-2) implies  $\sum_{t=1}^{\infty} \alpha_t = \infty$ 

• Requirements on the function g(z) combined with its estimate:

$$\exists \delta \geq 0$$
 such that  $g(x) \leq -\delta$  for  $x < \theta^*$  and  $g(x) \geq \delta$  for  $x > \theta^*$ . (A-4)

$$E[Z(\theta;\phi)] = g(\theta) \text{ and } Pr(|Z(\theta;\phi)| < C) = 1$$
 (A-5)

## Stochastic gradient decent

- Spatial data
- Neural nets  $R(\theta) = \sum_{i} R_i(\theta)$

$$R(\theta) = \sum_{i=1}^{N} R_i(\theta)$$

At top level. compute:

$$\delta_i = -2(y_i - f(x_i)), \quad \forall$$

At hidden level, compute

$$R_i(\theta) = \left(y_i - f(x_i)\right)^2$$

$$\delta_i = -2(y_i - f(x_i)), \quad \forall i$$

$$f(X) = \sum_{m=1}^{M_{NN}} \beta_m \sigma(\alpha_m^T X + \alpha_0)$$
where

$$s_{m,i} = \sigma'(\alpha_m^T x_i) \beta_m \delta_i, \quad \forall (i,m)$$

Evaluate:

$$\frac{\partial R_i(\theta)}{\partial \beta_m} = \delta_i z_{m,i} \& \frac{\partial R_i(\theta)}{\partial \alpha_{m,l}} = s_{m,i} x_{i,l}$$

$$\beta_m^{(r+1)} = \beta_m^{(r)} - \gamma_r \sum_{i=1}^N \frac{\partial R_i}{\partial \beta_m} \bigg|_{\theta = \theta^{(r)}}$$

$$\alpha_{m,l}^{(r+1)} = \alpha_{m,l}^{(r)} - \gamma_r \sum_{i=1}^{N} \frac{\partial R_i}{\partial \alpha_{m,l}} \bigg|_{\theta = \theta^{(r)}}$$

Det matematisk-naturvitenskapelige fakultet

## **Bayesian approach**

- Likelihood  $f(\mathbf{y}|\theta)$
- Introduce a prior  $p(\theta)$  describing knowledge about  $\theta$  prior to data
- Bayes theorem:

$$f(\theta|\mathbf{y}) = \frac{f(\theta)f(\mathbf{y}|\theta)}{f(\mathbf{y})}$$
$$f(\mathbf{y}) = \int_{\theta} f(\theta)f(\mathbf{y}|\theta)d\theta$$

- Bayesian paradigm: All relevant information about  $\theta$  is contained in the posterior distribution  $p(\theta|\mathbf{y})$ 
  - $\hat{\theta}_{post} = E[\theta|\mathbf{y}] = \int_{\theta} \theta p(\theta|\mathbf{y}) d\theta$
  - Credibility interval (one-dimensional):  $\alpha = \Pr(a < \theta < b | \mathbf{y}) = \int_a^b p(\theta | \mathbf{y}) d\theta$
- Posterior: Updated knowledge based on both prior and data
- Numerical aspect: Bayesian approach change optimization to integration
- Many other integration problems both inside and outside statistics, will focus on

$$\mu = \int_{\mathbf{x}} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

In many problems: x is high-dimensional

## Integration and Monte Carlo method

- 1D methods for integration  $O(n^{-r})$
- Monte Carlo method in higher dimensions (Rd)
  - MC:  $O(n^{-1/2})$  Provided: var(h(X)) < ∞
  - Fubini  $O(n^{-r/d})$  Provided bound on the derivative of integrand
- Random number generator (RNG)
  - Reproducible randomness = assign seed in a PRNG

#### UiO Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

#### Monte Carlo method

Aim (following notation from book):

$$\mu = E^{f(\mathbf{X})}[h(\mathbf{X})] = \begin{cases} \int_{\mathbf{X}} h(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} & \mathbf{x} \text{ continuous} \\ \sum_{\mathbf{X}} h(\mathbf{x}) f(\mathbf{x}) & \mathbf{x} \text{ discrete} \end{cases}$$

- Main applications
  - Bayesian statistics
  - Models with hidden variables
- Monte Carlo:
  - 1. Simulate  $\mathbf{X}_i \sim f(\mathbf{x}), i = 1, ..., n$
  - 2. Approximate  $\mu$  by

$$\hat{\mu}_{MC} = \frac{1}{n} \sum_{i=1}^{n} h(\mathbf{x}_i)$$

- Properties:

  - Unbiased E[μ̂<sub>MC</sub>] = μ
     If X₁, ..., Xn are independent

    - Variance: var[û<sub>MC</sub>] = ½ var[h(X)]
       Consistent: û<sub>MC</sub> → μ as n → ∞ if var[h(X)] < ∞</li>
  - Estimate of variance:

$$\widehat{\text{var}}[\hat{\mu}_{MC}] = \frac{1}{n-1} \sum_{i=1}^{n} (h(\mathbf{x}_i) - \hat{\mu}_{MC})^2$$

Main problem: How to simulate  $\mathbf{X}_i \sim f(\cdot)$ 

Det matematisk-naturvitenskapelige fakultet

## Simulation techniques

- Exact methods
  - Inversion/transformation methods
  - Rejection sampling
- Approximate methods
  - Sampling importance resampling
  - Sequential Monte Carlo
  - Markov chain Monte Carlo (Chapter 7 and 8)
- Variance reduction methods
  - Importance sampling
  - Antithetic sampling
  - Control variates
  - Rao-blackwellization
  - Common random numbers

### Simulation methods

- Low dimensions
  - Exact
    - Inversion/transformation methods
    - Rejection sampling
  - Approximate
    - Importance sampling
    - Sampling/importance resampling
- Higher dimensions (when low dimension methods fails)
  - Approximate
    - Sequential Monte Carlo (SMC) Sequential Importance Sampler (SIS)
    - Markov chain Monte Carlo (McMC)

Det matematisk-naturvitenskapelige fakultet

### Inversion and the transformation methods

Transformation: X = g(U)

Special case :  $X = F^{-1}(U)$  Inverse probability

**TABLE 6.1** Some methods for generating a random variable *X* from familiar distributions.

| Distribution                                                     | Method                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uniform                                                          | See [195, 227, 383, 538, 539, 557]. For $X \sim \text{Unif}(a, b)$ ; draw $U \sim \text{Unif}(0, 1)$ ; then let $X = a + (b - a)U$ .                                                                                                                                                                   |
| Normal( $\mu$ , $\sigma^2$ ) and Lognormal( $\mu$ , $\sigma^2$ ) | Draw $U_1$ , $U_2 \sim \text{i.i.d.}$ Unif(0, 1); then $X_1 = \mu + \sigma \sqrt{-2 \log U_1} \cos\{2\pi U_2\}$ and $X_2 = \mu + \sigma \sqrt{-2 \log U_1} \sin\{2\pi U_2\}$ are independent $N(\mu, \sigma^2)$ . If $X \sim N(\mu, \sigma^2)$ then $\exp\{X\} \sim \text{Lognormal}(\mu, \sigma^2)$ . |
| Multivariate $N(\mu, \Sigma)$                                    | Generate standard multivariate normal vector, Y, coordinatewise; then $X = \Sigma^{-1/2}Y + \mu$ .                                                                                                                                                                                                     |
| Cauchy( $\alpha$ , $\beta$ )                                     | Draw $U \sim \text{Unif}(0, 1)$ ; then $X = \alpha + \beta \tan\{\pi(U - \frac{1}{2})\}$ .                                                                                                                                                                                                             |
| Exponential( $\lambda$ )                                         | Draw $U \sim \text{Unif}(0, 1)$ ; then $X = -(\log U)/\lambda$ .                                                                                                                                                                                                                                       |
| $Poisson(\lambda)$                                               | Draw $U_1, U_2, \ldots \sim i$ i.i.d. Unif $(0, 1)$ ; then $X = j - 1$ , where j is the lowest index for which $\prod_{i=1}^{j} U_i < e^{-\lambda}$ .                                                                                                                                                  |
| $Gamma(r, \lambda)$                                              | See Example 6.1, references, or for integer $r$ , $X = -(1/\lambda) \sum_{i=1}^{r} \log U_i$ for $U_1, \ldots, U_r \sim \text{i.i.d. Unif}(0, 1)$ .                                                                                                                                                    |
| Chi-square ( $df = k$ )                                          | Draw $Y_1, \ldots, Y_k \sim \text{i.i.d. } N(0, 1)$ , then $X = \sum_{i=1}^k Y_i^2$ ; or draw $X \sim \text{Gamma}(k/2, \frac{1}{2})$ .                                                                                                                                                                |
| Student's $t$ (df = $k$ ) and $F_{k,m}$ distribution             | Draw $Y \sim N(0, 1)$ , $Z \sim \chi_k^2$ , $W \sim \chi_m^2$ independently, then $X = Y/\sqrt{Z/k}$ has the t distribution and $F = (Z/k)/(W/m)$ has the F distribution.                                                                                                                              |
| Beta(a, b)                                                       | Draw $Y \sim \text{Gamma}(a, 1)$ and $Z \sim \text{Gamma}(b, 1)$ independently; then $X = Y/(Y + Z)$ .                                                                                                                                                                                                 |
| Bernoulli( $p$ ) and Binomial( $n$ , $p$ )                       | Draw $U \sim \text{Unif}(0, 1)$ ; then $X = 1_{\{U < p\}}$ is Bernoulli(p). The sum of n independent Bernoulli(p) draws has a Binomial(n, p) distribution.                                                                                                                                             |
| Negative Binomial $(r, p)$                                       | Draw $U_1, \ldots, U_r \sim \text{i.i.d. Unif}(0, 1)$ ; then $X = \sum_{i=1}^r \lfloor (\log U_i) / \log\{1 - p\} \rfloor$ , and $\lfloor \cdot \rfloor$ means greatest integer.                                                                                                                       |
| Multinomial $(1, (p_1, \ldots, p_k))$                            | Partition [0, 1] into k segments so the ith segment has length $p_i$ . Draw $U \sim \text{Unif}(0, 1)$ ; then let X equal the index of the segment into which U falls. Tally such draws for Multinomial $(n, (p_1, \ldots, p_k))$ .                                                                    |
| $Dirichlet(\alpha_1, \ldots, \alpha_k)$                          | Draw independent $Y_i \sim \text{Gamma}(\alpha_i, 1)$ for $i = 1,, k$ ; then $X^T = \left(Y_1 / \sum_{i=1}^k Y_i,, Y_k / \sum_{i=1}^k Y_i\right)$ .                                                                                                                                                    |

## Rejection sampling

Easy to simulate from  $g(x) \approx f(x)$ .

$$f(x) \leq g(x)/\alpha \equiv e(x)$$
 (the envelope)



#### Algorithm:

- **1** Sample  $Y \sim g(\cdot)$ .
- 2 Sample  $U \sim \text{Unif}(0, 1)$ .
- 3 If  $U \le f(Y)/e(Y)$ , put X = Y, otherwise return to step 1

- Squeezed rejection sampling
- Adaptive rejection sampling

## Want to sample from f(x), but get sample from g(x)

- The ratio: w(x) = f(x)/g(x) is important
- Rejection sampling
  - Bounding the ratio
- Importance sampling
  - Weighting with the ratio

$$w^*(X_i) = \frac{f(\mathbf{X}_i)}{g(\mathbf{X}_i)} \qquad \hat{\mu}_{IS}^* = \frac{1}{n} \sum_{i=1}^n h(\mathbf{X}_i) w^*(\mathbf{X}_i),$$

$$w(\mathbf{X}_i) = \frac{w^*(\mathbf{X}_i)}{\sum_{j=1}^n w^*(\mathbf{X}_j)}$$

$$n \stackrel{n}{\underset{i=1}{\smile}} n$$

$$w(\mathbf{X}_i) = \frac{w^*(\mathbf{X}_i)}{\sum_{j=1}^n w^*(\mathbf{X}_j)}$$
  $\hat{\mu}_{IS} = \sum_{i=1}^n h(\mathbf{X}_i) w(\mathbf{X}_i),$  1

- Sampling importance Resampling (SIR)
  - Resampling with the ratio
  - Compute properties directly on resampled data
  - Proof: larger variance than importance sampling

$$\widehat{N}_{eff} = \frac{1}{\sum_{i=1}^{n} w_i^2}$$

## Variance reduction methods

- Importance sampling
  - Normalized or un-normalized
- Antithetic sampling
  - Create two sequences with negative correlation
- Control variates
  - Use known constants for bias reduction
- Rao-Blackwellization
  - Use of conditional expectations (partially analytics)
- Common random numbers
  - Constructing pairs of high correlation

### Sequential Monte Carlo

- ▶ Setting: Want to simulate from a sequence of distributions  $p(\mathbf{x}_{1:t}|\mathbf{y}_{1:t})$
- Approach
  - Assume a properly weighted sample  $\{(\mathbf{x}_{1:t-1}^i, w_{t-1}^i), i = 1, ..., N\}$  with respect to  $p(\mathbf{x}_{1:t-1}|\mathbf{y}_{1:t-1})$
  - Use importance sampling ideas to update to samples properly weighted sample  $\{(\mathbf{x}_{1:t}^{i}, w_{t-1}^{i}), i = 1, ..., N\}$  with respect to  $\pi_{t}(\cdot)$
  - 1. Generate  $x_t^i \sim g(\cdot | \mathbf{x}_{1 \cdot t-1}^i)$
  - 2. Calculate importance weights  $w_t^i$
  - 3. If necessary: Resample and adjust weights
- Calculation of weights: If state space structure:

  - Markov structure on  $\{x_t\}$ :  $p(x_t|\mathbf{x}_{1:t-1}) = p(x_t|x_{t-1})$ Conditional independence:  $p(\mathbf{y}_{t:1}|\mathbf{x}_{1:t}) = \prod_{s=1}^t p(y_s|x_s)$
  - Markov structure on proposal:  $g(x_t|\mathbf{x}_{1:t-1}) = g(x_t|x_{t-1})$

then updating of weights simplifies to

$$w_t^i = w_{t-1}^i \frac{p(x_t^i|x_{t-1}^i)p(y_t|x_t^i)}{g(x_t^i|x_{t-1}^i)}$$

### Sequential Monte Carlo



- Origin in state space models
- Possible to use in more complex settings than state space models
  - Calculation of weights typically much more difficult
- Resampling
  - Avoid degeneracy of last point  $x_t$
  - Will still suffer from degeneracy for  $x_s$  when  $s \ll t$
- Can be extended to include parameter estimation
  - Current methods all suffer from degeneracy
  - To a variable degree

## Markov chain theory general setting

- Aim: Simulate from f(x)
- ▶ Idea: Simulate Markov chain  $\{X^{(t)}\}$  such that

$$X^{(t)} \xrightarrow{D} f(X)$$

$$\frac{1}{L} \sum_{t=D}^{L+D} h(X^{(t)}) \to E^{f}[h(X)]$$

▶ Markov theory: Specify P(y|x) such that we have f(x) as stationary distribution



## Requirement for convergence

### Markov chain:

- is Irreducible: you can visit all of parameter space
- is Aperiodic : you do not go in loop
- Is Recurrent: you will always return to a set
- Has the correct stationary distribution

$$f(\mathbf{y}) = \int_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) d\mathbf{x}$$

Detailed balance:

$$f(y)P(x|y) = f(x)P(y|x)$$

Sufficient for stationary distribution

No guarantee for the other three

#### **UiO** • Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

#### Classes of MCMC

Two main classes:

- Metropolis-Hastings
  - 1. Sample a candidate value  $\mathbf{X}^*$  from a proposal distribution  $g(\cdot|\mathbf{x})$ .
  - 2. Compute the Metropolis-Hastings ratio

$$R(\mathbf{x}, \mathbf{X}^*) = \frac{f(\mathbf{X}^*)g(\mathbf{x}|\mathbf{X}^*)}{f(\mathbf{x})g(\mathbf{X}^*|\mathbf{x})}$$

3. Put

$$\mathbf{Y} = \begin{cases} \mathbf{X}^* & \text{with probability min}\{1, R(\mathbf{x}, \mathbf{X}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

- Gibbs sampling:
  - 1. Select starting values  $\mathbf{x}^{(0)}$  and set t = 0
  - 2. Generate, in turn

$$X_{1}^{(t+1)} \sim f(x_{1}|x_{2}^{(t)}, x_{3}^{(t)}, ..., x_{p}^{(t)})$$

$$X_{2}^{(t+1)} \sim f(x_{2}|x_{1}^{(t+1)}, x_{3}^{(t)}, ..., x_{p}^{(t)})$$

$$\vdots$$

$$X_{p}^{(t+1)} \sim f(x_{p}|x_{1}^{(t+1)}, ..., x_{p-1}^{(t+1)})$$

- 3. Increment t and go to step 2.
- Formally, Gibbs sampler a special case of M.H, but usually considered as a separate class of algorithms

#### UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

#### Hamiltonian Monte Carlo

► Hamiltonian MC (?):

$$\pi(\mathbf{q}) \propto \exp(-U(\mathbf{q}))$$
 Distribution of interest  $\pi(\mathbf{q}, \mathbf{p}) \propto \exp(-U(\mathbf{q}) - 0.5\mathbf{p}^T\mathbf{p})$  Extended distribution  $= \exp(-H(\mathbf{q}, \mathbf{p}))$   $H(\mathbf{q}, \mathbf{p}) = U(\mathbf{q}) + 0.5\mathbf{p}^T\mathbf{p}$ 

- Note
  - q and p are independent
  - ▶  $p \sim N(0, I)$ .
  - Usually dim(p)= dim(q)
- Algorithm (q) current value
  - 1. Simulate  $\boldsymbol{p} \sim N(\boldsymbol{0}, \boldsymbol{I})$
  - 2. Generate  $(\boldsymbol{q}^*, \boldsymbol{p}^*)$  such that  $H(\boldsymbol{q}^*, \boldsymbol{p}^*) \approx H(\boldsymbol{q}, \boldsymbol{p})$
  - 3. Accept (q\*, p\*) by a Metropolis-Hastings step
- Main challenge: Generate (q\*, p\*)
  - Leapfrog is one possibility

#### **UiO** • Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

#### Variational inference

- ▶ Bayesian inference: p(z|x)
- ▶ Approximate p(z|x) by a simpler  $q^*(z)$
- Perform inference by

$$E[h(\mathbf{z})|\mathbf{x}] \approx \int_{\mathbf{z}} h(\mathbf{z})q^{*}(\mathbf{z})d\mathbf{z}$$

$$q^{*}(\mathbf{z}) = \underset{q(\mathbf{z}) \in \mathcal{Q}}{\arg \min} KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}))$$

$$ELBO(q) = E^{q} \left(\log p(\mathbf{Z}, \mathbf{x})\right) - E^{q}(\log q(\mathbf{z}))$$

$$(*)$$

- CAVI = Coordinate ascent variational inference
- Integration problem now mainly transformed to an optimization problem
- Mean-field approximation:

Mean-field Approximation

$$q(\boldsymbol{z}) = \prod_{j=1}^{m} q_j(z_j)$$



#### **UiO** • Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

### **STAN**

- Data
  - Real numbers with constraints
  - y, σ
- Transformed data: (not a good name)
  - Real numbers and equations executed once
  - Typically fixed hyper parameters
  - alpha = 1, beta = 1
  - Any variable that is defined wholly in terms of data or transformed data should be declared and defined in the transformed data block.
- Parameter
  - The random variables we will sample
  - $\quad \boldsymbol{\eta} = (\eta_1, \dots, \eta_p), \ \mu, \tau$
- Transformed parameters
  - $\quad x_i = \tau \cdot \eta_i + \mu$

#### Model

- Prior:  $p(\eta, \mu, \tau)$
- Likelihood:  $p(y|x, \mu, \tau)$
- Generated quantities
  - $-h(\mathbf{x},\mu,\tau)$

$$E[h(x,\mu,\sigma)|y]$$

$$= \int_{z} h(x,\mu,\tau)p(x,\mu,\tau|y)dxd\mu d\sigma$$

- "Adaptive Hamiltonian MC"
- ► No need to use conjugate priors
- Unlike BUGS (or other Gibbs based samplers), avoid super vauge priors if you can, i.e. inv\_gamma(0.1,0.1)

### **General remarks**

- (Almost) all methods discussed are iterative
- General (convergence) properties available for (almost) all methods
- Not obvious which method to use for a specific problem
  - If possible, use different methods to be sure that you have obtained the right results
- Efficiency of a particular method depend on many tuning-parameters (which are application dependent)
- Partial analytical derivations can in many cases be benificial
  - Use of gradients
  - Conditional distributions
  - Dimension reduction in optimization
  - Rao-Blackwellization in simulation

#### UiO: Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

### Syllabus -requirements

- Main textbook: Givens and Hoeting (2012)
  - Chapter 1 Background Will only be referred to when needed
  - Chapter 2 Optimization General methods, will briefly be discussed
  - Chapter 3 Combinatorial optimization
  - Chapter 4 The EM algorithm
  - Chapter 5 Numerical integration General methods, will briefly be discussed
  - Chapter 6 Monte Carlo methods
  - Chapter 7 Markov Chain Monte Carlo
  - Chapter 8 Advanced topics in MCMC orientation/ as examples
  - Chapter 9 Bootstraping
- Some additional material
  - ADMM: Alternating directions methods of moments (Slides)
  - Sequential Monte Carlo (Note)
  - Stochastic gradient methods (Note)
  - Variational inference (Slides)
  - Hamiltonian Monte Carlo / STAN (Slides)
- Example code and exercises

STK 9051

+ Article ADMM

+ Article VI

+ Article HMC

## Machine learning or STK 4051/9051

- Complex models
- Algorithms for optimization
- Stochastic gradient
- Sparse coding
- Deep neural nets
- Probabilistic programming
  - Sampling
  - Variational Inference
- Large data sets
  - High performance computing
  - GPU

Course has given basic insight to important engines covering major parts of current activity

You have programmed your self to have a deeper understanding

Has not been focus, but is important in applications

=>Talk to the IT guy