
STK4051/9051 - Computational statistics

Trial exam spring 2019

Exercise 1
Consider first the standard Weibull distribution with density function

f0(x0) = αxα−1
0 e−xα0

and cummulative distribution function

F0(x0) = 1− e−xα .

(a) Explain how the inversion method can be used to generate samples
from f0.

Consider now the general Weibull distribution with density function

p(x) = α

β

(
x

β

)α−1
e−(x/β)α

(b) Show that if x0 has a standard Weibull density then x = βx0 has
a general Weibull density. Discuss how this result can be used to
generate random variables from the general Weibull distribution.

Assume now we want to generate two dependent random variables that have
marginal distributions that are of the Weibull form. Direct specification of
dependence for the Weibull distribution can be difficult, but can be greatly
simplified through transformation (this is called a copula approach in the
literature).

(c) Let Φ() be the cummulative distribution function for the standard
Normal distribution. Show that if y ∼ N(0, 1), then

x = F−1
0 (Φ(y))

has a standard Weibull distribution.

(d) Assume now that you are able to simulate y = (y1, y2) from a bivariate
Normal distribution N(0,Σ) where Σ1,1 = Σ2,2 = 1 and Σ1,2 = Σ2,1 =
ρ. Explain how you can use this to simulate two dependent Weibull
distributed variables.

Exercise 2
Consider the following algorithm, which we will call Barker’s algorithm (after
Barker (1965) who suggested it):
Given the current state x(t):

1



• Draw y from the proposal distributionK(x(t),y) (or transition kernel).

• Draw U ∼ Uniform[0, 1] and update

x(t+1) =
{
y, if U ≤ rB(x(t),y)
x(t) otherwise

where

rB(x,y) = π(y)K(y,x)
π(x)K(x,y) + π(y)K(y,x) .

We will assume that K(x,y) > 0 for all x,y.

(a) Show that {xt} is a Markov chain with invariant distribution π(x).

(b) Explain how we can used the simulations {x(t)} to estimate Eπh =∫
x h(x)π(x)dx.

What kind of properties of the Markov chain will influence on the
precision of such an estimate?

Assume A1 and A2 are two transition-kernels for Markov chains with the
same stationary distribution π. Let v1 be the variance of the estimate on
Eπh based on simulations using A1 and v2 the variance of the estimate of
Eπh using A2.
Assume A1(x,y) ≥ A2(x,y) for all y 6= x. One can then show that v1 ≤ v2
(this you do not have to prove).

(c) Let

rM (x,y) = min
{

1, π(y)K(y,x)
π(x)K(x,y)

}
.

Show that rM (x,y) ≥ rB(x,y) for all x,y.

Use this to argue that the Metropolis-Hastings algorithm is more effi-
cient than Barker’s algorithm.

Based on the differences between these two algorithms, do you think
this is a reasonable result?

Exercise 3
The Gibbs sampler applies to vectors of random variables. We shall in this
exercise consider random pairs (X,Y ). The algorithm is as follows:

Algorithm
Select X (initialization)
Repeat

Sample Y from its conditional distribution given X.
Sample X from its conditional distribution given Y .

It can under general conditions be proved that a simulation of (X,Y ) appears
in the limit as the loop is continued on and on. We shall below actually prove
this result in the simple example considered.
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Let (X,Y ) be bivariate normal, with means E(X) = E(Y ) = 0, variances
var(X) = var(Y ) = 1 and correlation corr(X,Y ) = ρ. The conditional
distribution of Y given X = x is then normal with mean ρx and variance
1 − ρ2, and the conditional distribution of X given Y = y is defined by
symmetry. Let {Zn} and {Vn} be sequences of independent normal variables
(0, 1). Also assume independence between sequences.

(a) Show that the Gibbs sampler sets up the double recursion

Yn = ρXn +
√

1− ρ2Zn, Xn = ρYn−1 +
√

1− ρ2Vn.

It will be proved that as n → ∞, (Xn, Yn) converges to a sample of (X,Y )
for any starting point X0 = µ0. We shall also study the rate of convergence.
Consider {Xn} first.

(b) Show that Xn = ρ2Xn−1 + εn, where εn =
√

1− ρ2(ρZn−1 + Vn).

Note that εn is normal with mean 0 and variance σ2
ε = 1 − ρ4. Stochastic

processes of the form Xn = aXn−1 + εn is known as autoregressive of order
one (or AR(1) for short). They are known to converge in distribution to a
limit if |a| < 1. Take this result for granted. Explain why it applies here.

(c) Why is E(Xn) = ρ2E(Xn−1)? Use this to establish that E(Xn) =
ρ2nµ0.

(d) Show that var(Xn) = ρ4var(Xn−1) + σ2
ε . Since varX0 = 0, this yields

var(Xn) = σ2
ε

1− ρ4 (1− ρ4n).

Prove it.

(e) What is the limit for E(Xn) and var(Xn) when n→∞? Insert for σ2
ε .

(f) Explain by reason of symmetry that the same results applies to {Yn}.

(g) Show that E(XnYn) = ρE(X2
n) and use this to show that E(XnYn)

converges to the right value. (Note that in this case E(XnYn) =
corr(Xn, Yn).)

(h) Summarize your findings. What is the limit distribution of (Xn, Yn)?
Discuss the convergence speed. What is its dependence on ρ?

Exercise 4
Consider the following state space model:

xt =φxt−1 + εt state equation

yt ∼Poisson(exp{1 + xt}) observation equation

where x0 and ε1, ε2, ... are independent and standard normal distributed.
We want to estimate φ based on observations y1, ..., yT . We will do this in
a Bayesian way and assume we have a prior distribution N(0, σ2

φ) on φ.
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A possible way to estimate φ in such situations is to extend the state model
to the following model:

φt =φt−1 state equation 1

xt =φt−1xt−1 + εt state equation 2

yt ∼Poisson(exp{1 + xt}) observation equation

where φ0 ∼ N(0, σ2
φ). Non-linear filters try to compute the posterior distri-

bution for (φt, xt) based on y1, ..., yt. Since φ = φT , the posterior distribution
for (φT , xT ) based on y1, ..., yT gives us the posterior distribution for φ given
y1, ..., yT .
Simulation methods for non-linear filters can therefore be used on the bi-
variate state vector (φt, xt).

(a) Explain the general principles behind sequential importance sampling
(SIS).

Discuss why resampling in general is important in connection to SIS
algorithms.

(b) Simulations from the posterior distribution for (φt, xt) based on y1, ..., yt
was performed through the following SIS algorithm:

• Draw x̃jt from N(φjt−1x
j
t−1, 1) for j = 1, ...,M

• Put φ̃jt = φjt−1 for j = 1, ...,M .

• Calculate the weights wjt = p(yt|xt = x̃jt ) for j = 1, ...,M and the

normalized weights qjt = wjt/
∑
j′ w

j′

t .

• Draw (x1
t , φ

1
t ), ..., (xMt , φMt ) from {(x̃1

t , φ̃
1
t ), ..., (x̃Mt , φ̃Mt )} with re-

placement and with probabilities q1
t , ..., q

M
t .

The figure below shows simulations of φt for t = 1, ..., T based on a
SIS algorithm with resampling. Each curve corresponds to a sequence
of simulated φ’s, φj1, ..., φ

j
T . The different simulations φjt , j = 1, ...,M

for a fixed t are (approximately) from the posterior distribution for φt
given y1, ..., yt. Here T = 30 and M = 50.
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Why do the number of different values of the simulated φ’s decrease
with t? What kind of problems do this make in the estimation of φ?
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(c) A more efficient algorithm can be obtained by integrating out the
unknown φ when simulating the x-process.

One can show (you do not have to do this) that

p(φ|x1, ..., xt, y1, ..., yt) = N(φ̂t, σ2
t )

where

φ̂t =
σ2
φ

∑t
i=2 xixi−1

1 + σ2
φ

∑t
i=2 x

2
i−1

, σ2
t =

σ2
φ

1 + σ2
φ

∑t
i=2 x

2
i−1

Use this to explain how you can simulate from the distribution
p(xt+1|x1, ..., xt, y1, ..., yt).

(d) Consider now the SIS algorithm (with resampling) which at time t
goes through the following steps:

• Draw x̃jt from p(xt|x1, ..., xt−1, y1, ..., yt−1) for j = 1, ...,M .

• Calculate the weights wjt = p(yt|xt = x̃jt ) for j = 1, ...,M and the

normalized weights qjt = wjt/
∑
j′ w

j′

t .

• Draw x1
t , ..., x

M
t from {x̃1

t , ..., x̃
M
t } with replacement and the prob-

abilities q1
t , ..., q

M
t .

• Draw φjt ∼ p(φ|x
j
1, ..., x

j
t , y1, ., yt)

The figure below shows simulations of φt based on this algorithm.
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Which advantages does this algorithm have compared to the one given
in (b)?
In order to estimate the posterior expectation of φ, is it necessary to
simulate the φ’s at all? If not, explain how inferense on φ then can be
performed. What is this technique called?

Exercise 5 (Weight loss programme)
Venables and Ripley [1999] contain a dataset (originally from Dr. T Davies)
describing weights (yi) of obese patients after different number of days (xi)
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Figure 1: Weight loss from an obese patient

since start of a weight reduction programme. The data is plotted in Figure 1.
Venables and Ripley [1999] suggests the following model for this dataset:

yi = β0 + β1e
−β2xi + εi, εi

iid∼ N(0, σ2)

for i = 1, ..., n. Here θ = (β0, β1, β2, σ
2) is a set of parameters that needs

to be estimated. Estimation will be based on maximum likelihood, i.e.
maximizing

l(θ) = −n2 log(σ2)− 1
2σ2

n∑
i=1

(yi − β0 − β1e
−β2xi)2

(a) Show that maximisation with respect to β = (β0, β1, β2) is equivalent
to minimizing

RSS(β) =
n∑
i=1

(yi − β0 − β1e
−β2xi)2.

What is the optimal value for σ2 given β?

(b) Describe Newton’s method and perform the calculations needed to
implement this algorithm.
For reference, the following results where obtained using Newton’s
method in this case. Note however that for small perturbations of
these starting values, numerical problems occured.

Iteration s β
(s)
0 β

(s)
1 β

(s)
2 (σ2)(s) l(s))

0 90.000 95.000 0.0050000 209.386 -143.259
1 84.339 100.551 0.0051991 0.72866 -69.670
2 76.350 107.131 0.0044158 1.47380 -78.827
3 76.801 106.841 0.0045417 0.65652 -68.314
4 81.664 102.393 0.0048807 0.60634 -67.281
5 81.399 102.662 0.0048866 0.56958 -66.468
6 81.374 102.684 0.0048844 0.56958 -66.468
7 81.374 102.684 0.0048844 0.56958 -66.468

(c) A run with Fisher’s scoring algorithm with the same starting values
as above gave the following results:
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Iteration s β
(s)
0 β

(s)
1 β

(s)
2 (σ2)(s) l(β(s), (σ2)(s))

0 90.000 95.00 0.0050000 209.39 -143.259
1 81.400 102.66 0.0048760 0.5758 -66.609
2 81.374 102.68 0.0048844 0.5696 -66.468
3 81.374 102.68 0.0048844 0.5696 -66.468
4 81.374 102.68 0.0048844 0.5696 -66.468

Give a general description of this algorithm and discuss its benefits
compared to Newton’s method

(d) Show that given β2, the maximum values for all the other parameters
can be found analytically.

What benefits do this result have with respect to optimisation?

Exercise 6
Consider a mixture model where

Pr(Ci = k) =πk

Pr(yi = y|Ci = k) =λyik e
−λk

yi!

Our aim is to obtain maximum likelihood estimates of θ = {(πk, λk), k =
1, ...,K} based on observations y = (y1, ..., yn).
The histogram below shows a simulated dataset with K = 10 classes and
n = 10 000.
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(a) Write down the likelihood function based on the observations y.

A call to a general optimiser using the Nelder-Mead algorithm gave
the following estimates:

k 1 2 3 4 5 6 7 8 9 10

π̂k 0.107 0.000 0.146 0.164 0.049 0.126 0.004 0.202 0.183 0.020

λ̂k 5.18 8.26 11.32 19.26 27.75 28.01 28.27 37.17 47.85 48.83
with a log-likelihood value equal to 40573.98, obtained after 502 func-
tion calls.

Describe short the main features of the Nelder-Mead algorithm.
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(b) An alternative to a direct optimiser is to use the EM algorithm where
we treat {ci} as missing variables. Derive the updating equations for
the parameters involved in this case.

The plot below shows the log-likelihood values at different iterations
based on the EM algorithm.

Further, the final estimates obtained in this case is given in the table
below, obtained after 346 iterations with a final log-likelihood value of
40573.98.

Explain the result in the figure with respect to properties of the EM
algorithm.

k 1 2 3 4 5 6 7 8 9 10

π̂k 0.110 0.136 0.097 0.107 0.103 0.025 0.149 0.074 0.119 0.081

λ̂k 5.24 11.31 17.56 22.30 27.80 31.13 35.04 40.76 46.68 49.32
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(c) Comparing the results from the two algorithms, the estimates appears
to be quite different. However, the log-likelihood values are quite sim-
ilar. Try to give an explanation on this.

Exercise 7
Cortez et al. [2009] considers a dataset of red wine quality of the Portuguese
”Vinho Verde” wine. The following variables are measured:
Input variables (based on physicochemical tests): x1 - fixed acidity, x2 -
volatile acidity, x3, - citric acid, x4 - residual sugar, x5 - chlorides, x6 - free
sulfur dioxide, x7 - total sulfur dioxide, x8 - density, x9 - pH, x10 - sulphates,
x11 - alcohol.
Output variable (based on sensory data): y - quality (score between 0 and
10).
A simple model for the output quality is

yi = β0 +
p∑
j=1

βjxij + εi

with p = 11 and i = 1, ..., n = 1599. This model is including all the variables
as linear terms. In practice however, we would like to perform some kind of
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model selection. One way of describing possible submodels is

yi = β0 +
p∑
j=1

γjβjxij + εi

where γj = 1 if the covariate is to be included into the model and 0 otherwise.
Define γ = (γ1, ..., γp). Our aim will be to minimise J(γ) where

J(γ) = −2 ∗ `(γ) + 2 ∗ (2 +
p∑
j=1

γj)

and `(γ) is the log-likelihood value obtained by selecting the optimal β
values for the given model.

(a) The figure below shows the results from two different versions of sim-
ulated annealing, the first changing one γj at a time, the second also
allowing for two changes at a time. For the first version, one compo-
nent is selected at random at each iteration. For the second version,
first a random selection on whether to change one or two variables is
made, thereafter the components to change are selected at random.

Give a short description of the simulated annealing algorithm. Discuss
in particular the use of neighborhoods and relate that to the figure be-
low.
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(b) Assume that the temperature is selected to be very large. What kind
of algorithm does then appear?

On the other hand, if the temperature is kept fixed, what kind of
algorithm do we then obtain?

Exercise 8
Consider a mixture model where

Pr(Ci = k) =πk, k = 1, 2
p(xi|Ci = k) =N(µk, σ2

k)
p(µk) =N(0, σ2

β), k = 1, 2
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Our focus is now Bayesian inference where we are interested in the posterior
distribution p(µ|y) with µ = (µ1, µ2) and x = (x1, ..., xn).
The plots below compare a variational inference approximation with output
from a simple Metropolis-Hastings algorithm (where in each case the first
half is discarded) for different simulated datasets (where the µk values differ).
In each row, the first plot shows the estimated density of the observations
x while the two next plots shows the estimates of p(µ1|x) and p(µ2|x) with
the black lines corresponding to output from Metropolis-Hastings while the
red lines correspond to the variational inference approximation.
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(a) The variational approximation is based on a mean-field assumption
with Gaussian distributions assumed for each variable of interest.

Describe what kind of assumptions the mean-field approximation is
based on. Also specify which parameters that needs to be fitted in the
variational approximation approach.

(b) Discuss the results seen in the figure and relate this to the assumptions
made for the variational approximation.
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