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UNIVERSITY OF OSLO 

Faculty of mathematics and natural sciences 

Exam in: STK4051/STK9051 –– Computational statistics  

Day of examination:  Monday June 7th 2021 

Examination hours: 09.00 – 13.00.  

This problem set consists 6 pages, final page for STK9051 only  

Appendices: None 

Permitted aids:  All examination aids are allowed (e.g. books, online resources, 

WolframAlpha, scientific programming tools, etc.).   

It is not allowed to collaborate or communicate with others during the exam 

about the assignments.  

 

Problem 1 (Rejection sampling) 

The Pareto distribution was originally applied to describing the distribution of wealth in a 

society. The distribution is characterized by two parameters (𝛼, 𝑥m), where 𝛼 > 0  and 𝑥m >

0. The probability density is given by the formula:  

𝑓(𝑥) = {  
𝛼𝑥m

𝛼

𝑥𝛼+1
 for 𝑥 > 𝑥m

0 otherwise

      

a) How can you use probability inversion to transform a set of samples, 𝑢1, 𝑢2, … , 𝑢𝑛   
from a uniform distribution on the unit interval to a set of samples from the Pareto 

distribution? State the principles and derive a formula for the transformation. 

  

The Cauchy distribution is defined by the density: 

𝑓(𝑥) =
1

𝜋(1 + 𝑥2)
, −∞ < 𝑥 < +∞  

 

b) As a rejection sampling algorithm to sample from the Cauchy distribution a proposal 

distribution 𝑔(𝑥) is suggested. This distribution has the form:  

 

𝑔(𝑥) = {

1

4
if |𝑥| ≤ 1

𝛼

4𝑥𝛼+1 
if |𝑥| > 1
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Which values of 𝛼 > 0 can be used to perform rejection sampling? For those values of 

𝛼 which can be used for rejection sampling of the Cauchy distribution, define an 

envelope and compute the acceptance rate in terms of 𝛼.  

 

Problem 2 (EM algorithm) 

Consider the mixture model for clustering:  

𝑃(𝐶𝑖 = 𝑘) =
1

𝐾
,     𝑘 = 1, … , 𝐾 , 𝑖 = 1, … , 𝑛 

𝑝(𝑥𝑖|𝐶𝑖 = 𝑘 ) = 𝜙(𝑥; 𝜇𝑘 , 𝜎𝑘
2), 𝑘 = 1, . . 𝐾, 𝑖 = 1, … , 𝑛 

Where 𝑥 = (𝑥1, … 𝑥𝑛) is the observations,  𝐶 = (𝐶1, … 𝐶𝑛) is the class labels,  𝜙(𝑥; 𝜇, 𝜎2)  is 

the normal density with mean 𝜇 and variance 𝜎2.  Our aim is to obtain maximum likelihood 

estimates of 𝜃 = {𝜇𝑘, 𝜎𝑘
2, 𝑘 = 1, … , 𝐾} based on observations  𝑥 = (𝑥1, … 𝑥𝑛). The class labels 

are missing.  

a) In the context of the EM algorithm write down the expression for the complete log-

likelihood, derive the expression for 𝑄(𝜃|𝜃(𝑡)), and show that the update on 𝜇𝑘 ,  and 

𝜎𝑘
2,  is given by:  

𝜇𝑘
(𝑡+1)

=
∑ 𝑃(𝐶𝑖 = 𝑘|𝑥𝑖 , 𝜃(𝑡) )𝑥𝑖

𝑛
𝑖=1

∑ 𝑃(𝐶𝑖 = 𝑘|𝑥𝑖 , 𝜃(𝑡) )𝑛
𝑖=1

                    

(𝜎𝑘
2)(𝑡+1) =

∑ 𝑃(𝐶𝑖 = 𝑘|𝑥𝑖, 𝜃(𝑡) )(𝑥𝑖 − 𝜇𝑘
(𝑡+1)

)
2

   𝑛
𝑖=1

∑ 𝑃(𝐶𝑖 = 𝑘|𝑥𝑖, 𝜃(𝑡) )𝑛
𝑖=1

 

 

Derive also the expression for 𝑃(𝐶𝑖 = 𝑘|𝑥𝑖, 𝜃(𝑡) ). 

 

b) In semi supervised learning it is possible to enhance learning by actively observing the 

class membership of  some of the observations, thus we get the additional information 

that  𝐶𝑖 = 𝑐𝑖   for 𝑖 = 1, … , 𝑚 where   𝑚 < 𝑛.  Given this additional information how 

would you change the updating rule for 𝜇𝑘  and 𝜎𝑘
2 above. You do not need to show the 

full derivation of the new update, but comment on how the new information changes 

𝑄(𝜃|𝜃(𝑡)). Relate this change to the to the definition of 𝑄(𝜃|𝜃(𝑡)). 

 

c) To assess the uncertainty in the EM estimator it is possible to use a bootstrap procedure. 

In the setting of the semi supervised learning from 2b describe both a parametric and a 

nonparametric bootstrap for assessing the uncertainty in the EM estimator. Discuss 

strengths and weaknesses in these two different approaches when applied to the 

problem of semi supervised learning in 2b.  
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In the remainder of the problem we will assume that 𝐾 = 2 and that (𝜎1, 𝜎2) = (1,2). Thus, 

the unknown parameters in this problem is 𝜃 = (𝜇1, 𝜇2) with 𝜇1  < 𝜇2.  The histogram from 

one such model is shown in figure 1.   

Figure 1: Histogram of the observations  𝑥1, … , 𝑥𝑛 used in problem 1d.  

We will now consider the question about how to collect labels. Three different strategies are 

proposed:  

A) Collect 10% of the labels at random 

B) Collect the label from the 5% highest and 5% lowest values 

C) Collect data from the 10% of the data closest to the median  

 

d) Table 1 and 2 gives the values for the observed information matrix and its inverse, given 

the observations in figure 1. The cases shown are the unsupervised case from 1a, the 

three strategies A, B and C, and the complete likelihood where we know all class labels.   

Why is the inverse of the observed information matrix relevant?  Based on the two 

tables, discuss which of the three models A, B and C that provide the most information, 

comment also on the result by comparing with the unsupervised and complete case. 

Which strategy for label selection would you use?   

 Unsupervised Strategy A Strategy B Strategy C Complete 

 𝜇1 𝜇2 𝜇1 𝜇2 𝜇1 𝜇2 𝜇1 𝜇2 𝜇1 𝜇2 

𝜇1 74.26 -6.04 77.09 -5.34 76.54 -7.47 82.74 -2.55 99.00 0.00 

𝜇2 -6.04 16.29 -5.34 17.51 -7.47 17.04 -2.55 18.00 0.00 25.25 

Table 1: Observed information matrix for the data in figure 1.  

  Unsupervised Strategy A Strategy B Strategy C Complete 

 𝜇1 𝜇2 𝜇1 𝜇2 𝜇1 𝜇2 𝜇1 𝜇2 𝜇1 𝜇2 

𝜇1 0.014 0.005 0.013 0.004 0.014 0.006 0.012 0.002 0.010 0.000 

𝜇2 0.005 0.063 0.004 0.058 0.006 0.061 0.002 0.056 0.000 0.040 

Table 2: The inverse of the observed information matrix for the data in figure 1.  
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Problem 3 (Importance sampling) 

A random pair (𝑋, 𝑊) is properly weighted with respect to a target distribution 𝜋(𝑥) if - for 

any square integrable function ℎ,  we have that 𝐸(𝑊ℎ(𝑋)) = 𝑐 ⋅  𝐸𝜋 (ℎ(𝑋)).  

a) In the setting of the Bayesian inference, the probability model is defined by the prior 

distribution 𝑝(𝑥), and the likelihood defined by 𝑝(𝑦|𝑥). The target distribution is the 

posterior distribution  𝑝(𝑥|𝑦).  We will solve the problem of Bayesian inference using 

importance sampling. Show that if the probability density of 𝑋  is 𝑔(𝑥)  and we define  

𝑊 = 𝑝(𝑋)𝑝(𝑋|𝑦)/𝑔(𝑋) then the random pair (𝑋, 𝑊) will be properly weighted with 

respect to 𝑝(𝑥|𝑦).   What is the value of 𝑐? Given 𝑀 samples of the random pair 

(𝑋, 𝑊), say (𝑥1, 𝑤1), (𝑥2, 𝑤2), … , (𝑥𝑀, 𝑤𝑀),  provide an estimate of the integral: 

∫ ℎ(𝑥)𝑝(𝑥|𝑦)𝑑𝑥

∞

−∞ 

 

 

Consider now a generic state space model described by: 𝑝(𝑥1) and 𝑝(𝑥𝑖+1|𝑥𝑖),  

𝑖 = 1, … , (𝑛 − 1), i.e.  and the likelihood 𝑝(𝑦𝑖|𝑥𝑖), for  𝑖 = 1, … , 𝑛 .  The samples are generated 

by another state space model defined by 𝑔(𝑥1) and 𝑔(𝑥𝑖+1|𝑥𝑖),  for 𝑖 = 1, … , (𝑛 − 1).   

b) For the model above derive an expression for weights 𝑊𝑖  which will be properly 

weigthed with respect to 𝑝(𝑥𝑖|𝑦1, … , 𝑦𝑖).  Show also that this expression can be given 

the recursive form:   

𝑊𝑖 = 𝑊𝑖−1

𝑝(𝑋𝑖|𝑋𝑖−1)𝑝(𝑦𝑖|𝑋𝑖)

𝑔(𝑋𝑖|𝑋𝑖−1 )
, for 𝑖 = 2, … , 𝑛 

 

Problem 4 (Markov chain Monte Carlo, McMC) 

In this problem, we will analyze a variance component model using Bayesian inference. In a 

variance component model with one layer we have three parameters (𝜇, 𝜎𝑋
2, 𝜎𝑅

2). The statistical 

model is defined as 𝑦𝑖𝑗 = 𝑥𝑖 + 𝜀𝑖𝑗 ,  where 𝑥𝑖, 𝑖 = 1, … 𝑛, is iid with distribution 𝑁(𝜇, 𝜎𝑋
2), and 

𝜀𝑖𝑗  for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, 2 is iid with distribution 𝑁(0, 𝜎𝑅
2).    

The likelihood can be given as: 

𝐿(𝜇, 𝜎𝑥
2, 𝜎𝑅

2 ; 𝒚) = ∏ 𝜙2 ([
𝑦𝑖1

𝑦𝑖,2
] ; [

𝜇
𝜇] , [

𝜎𝑅
2 + 𝜎𝑋

2 𝜎𝑋
2

𝜎𝑋
2 𝜎𝑅

2 + 𝜎𝑋
2])

𝑛

𝑖=1

 

Where 𝜙2(𝒙; 𝝁, 𝚺) is a bivariate gaussian distribution. The prior distributions for the 

parameters are improper, with 𝑝(𝜇) ∝  1, 𝑝(𝜎𝑅
2) ∝  1/𝜎𝑅

2 and 𝑝(𝜎𝑋
2) ∝  1 /𝜎𝑋

2.   
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a) A sampling path for a random walk McMC method is shown in figure 2.  Characterize the 

different parts of the path, and comment on the characteristics of the sample path. Would 

you expect the chain to have a high or low acceptance rate? In general, what is the 

requirements for a Markov chain to converge to the target distribution, and how can you 

improve your confidence in the results obtained by McMC methods?   

Figure 2: Sample path of 𝜎𝑋
2 for a random walk Markov chain 

 

b) A key parameter in the random walk algorithm is the magnitude of the permutation. Table 

3 lists the acceptance rate and the integral of the autocorrelation for 5 values of the 

magnitude of the permutation.  Relate the numbers given in the list to the effective number 

of samples. Comment on how the random walk algorithm responds to the magnitude of 

the permutation. Among the five magnitudes which would you select?   

 

Magnitude of scale 0.02 0.05 0.10 0.20 0.5 

Acceptance rate 0.91 0.78 0.59 0.34 0.06 

∑ 𝜌𝜇(ℎ) ℎ≥1    82.5 9.9 3.3 3.8 7.4 

∑ 𝜌𝜎𝑅
2(ℎ) ℎ≥1   113.6 34.7 8.6 7.6 15.3 

∑ 𝜌𝜎𝑋
2 (ℎ) ℎ≥1   24.8 14.3 2.9 4.4 13.2 

∑ 𝜌𝑙(ℎ) ℎ≥1   76.1 11.8 6.6 3.8 17.4 

Table 3: Summary numbers for 5 different runs of a random walk Markov chain. The summary 

numbers from top down: are acceptance rate, integral of autocorrelation function for parameters 

𝜇  , 𝜎𝑅
2 , 𝜎𝑋

2, and the log likelihood. 

To preserve the positivity of the variance, we use a transformed variable in the problem 

definition, define 𝜂𝑅 = log 𝜎𝑅
2   and 𝜂𝑋 = log 𝜎𝑋

2.    

 

c) We want to get samples from the posterior distribution of 𝜇, 𝜎𝑥
2, 𝜎𝑅

2, by a random walk in 

the transformed domain, i.e. using 𝜇, 𝜂𝑋 , 𝜂𝑅. Define the random walk and derive the 

metropolis Hastings ratio in the transformed domain. You can write the algorithm and 

formulas needed or provide a code which does the job, you are free to use whatever 

programming language you like. (Hint: If you chose to provide R-code you can use the 

function dmvnorm from the library mvtnorm to compute 𝜙2(𝒙; 𝝁, 𝚺).)    
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d) For STK 9051 only. An alternative to the random walk is the Gibbs sampler.  To reduce 

the complexity of the likelihood function, introduce also the unobserved observed group 

average 𝑋𝑖, 𝑖 = 1, … , 𝑛. Set up the joint distribution 𝑝(𝜇, 𝜎𝑅
2, 𝜎𝑋

2, 𝒙, 𝒚), and compute the 

conditional distributions required for the Gibbs sampler. You might need the density for 

the inverse gamma distribution:  

𝑝(𝑧; 𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
 (

1

𝑧
)

𝛼+1

exp(−𝛽/𝑧) 

 

 


