
Solution sketch to problems:  STK 4051 / STK 9051 exam spring 2022 

Problem 1 

a) To get exact samples we can use either rejection sampling or  probability inversion.  

 

Details of probability inversion For the Laplace distribution we have: [obtained by 

integrating the pdf provided] 

 

𝐹(𝑥|𝜇, 𝜎) = {

1

2
exp (

𝑥 − 𝜇

𝜎
) 𝑥 ≤ 𝜇

1 −
1

2
exp (−

𝑥 − 𝜇

𝜎
) 𝑥 > 𝜇

 

We want to invert 𝑢 = 𝐹(𝑥|𝜇, 𝜎), to find 𝑥 we further have 𝐹(𝜇|𝜇, 𝜎) =
1

2
.   Such that 

the change of  function description happens for 𝑢 = 1/2. 

 

𝐹−1(𝑥|𝜇, 𝜎) = {
𝜇 + 𝜎 ⋅ log⁡ 2𝑢 𝑢 ≤ 1/2

𝜇 − 𝜎 log 2(1 − 𝑢) 𝑢 > 1/2
 

################################################################### 

An alternative is to sample a standard exponential distribution 𝑧 = − log 𝑢, and  a 

sample s from a uniform distribution on {−1,1}.⁡⁡𝑃(𝑠 = −1) = 𝑃(𝑠 = 1) = 1/2, and 

set: 

𝑥 = 𝜇 + 𝑠 ⋅ 𝜎 ⋅ 𝑧 

This approach uses the symmetry of  the distribution abound the median, and that the 

left and right tails decays like the exponential distribution.    

 

Problem 2 

In the problem of model selection,  the parameter  is 𝛾𝑘 ∈ ⁡ {0,1}, 𝑘 = 1,… 𝑝. There are 2𝑝, 

possibilities  thus the problem is NP hard. To evaluate the target function (AIC),  we find 

𝑚 = ∑ 𝛾𝑘
𝑝
𝑘=1 ⁡, and we find the likelihood by performing maximum likelihood estimation for 

the linear regression  model:  

⁡𝑦𝑖|𝛾⁡ = 𝛽0 + ∑ 𝛽𝑘𝑥𝑘𝑖
{𝑘:𝛾𝑘=1}

+ 𝜀𝑖 

and evaluate the likelihood at the estimate obtained.   

Fitness function:  The fitness function should be such that the optimal fitness corresponds to 

the optimal AIC. The desired values should have high fitness. Thus chose a fitness function 

which is monotone decreasing function of AIC.  



Population: The population size should be selected according to a the maximum number of 

explanatory variables desired. For binary problems [such as the model selection] we usually 

use:  

𝑝 < Population⁡size < 2𝑝 

Selection: There should be an element of survival of the fittest, such that the individuals with 

the best fit are selected more often.   One option is  to sample the population with weights 

proportional to the fit, or a monotone function of the fit: One example could be: 

    𝑃(𝑖) ∝ exp(−𝐴𝐼𝐶(𝑖) ⋅ ⁡𝑏 − 𝑐) 

In the above expression 𝑖⁡refer to one individual in the population. It is possible to choose just 

one of the parents according to the probability and select the other at random. 

Crossover: This is a way to combine the parents. For the binary selection we have. It is 

common to fix the values that both parents have in common and sample the remaining 

randomly.   

Mutation: After the crossover it completed, we change a limited number of the gamma values 

at random.  This should not bee a too large fraction as then the inheritance gets too little 

effect. .The probability of making a change could be 1/p, thus there is on average one change 

in each offspring.  

The feature which makes the genetic algorithm different from local methods based on 

neighborhood,  is that we consider multiple solutions at the same time and let these interact to 

provide a better solution together.  

 

Problem 3 

a) The likelihood: 

𝐿(𝛽, 𝜎) = ⁡∏
1

2𝜎

𝑛

𝑖=1

exp(−
|𝑦𝑖 − 𝛽𝑇𝑥𝑖|

𝜎
) 

The log likelihood: 

 

𝑙(𝛽, 𝜎) = ⁡−𝑛 ⋅ log 2⁡− 𝑛 ⋅ log 𝜎 −∑
|𝑦𝑖 − 𝛽𝑇𝑥𝑖|

𝜎

𝑛

𝑖=1

⁡⁡⁡ 

Since 𝑙(𝛽, 𝜎) depend on 𝛽 only through the sum, and 1/𝜎 is a positive constant, the 

maximum with respect to  𝑙(𝛽, 𝜎) is the minimum of  ∑ |𝑦𝑖 − 𝛽𝑇𝑥𝑖|
𝑛
𝑖=1 ⁡⁡⁡ 

 

𝜕𝑙(𝛽, 𝜎)

𝜕𝜎
= −

𝑛

𝜎
+

1

𝜎2
∑|𝑦𝑖 − 𝛽𝑇𝑥𝑖|

𝑛

𝑖=1

⁡⁡⁡ 

𝜕𝑙(𝛽, 𝜎)

𝜕𝛽
=

1

𝜎⁡
∑sign(𝛽𝑇𝑥𝑖 − 𝑦𝑖)⁡

𝑛

𝑖=1

⋅ ⁡𝑥𝑖⁡⁡⁡ 

b) Newton methods in general requires the second derivative of the loglikelihood, which is not 

well-defined in the problem(since it would involve the derivative of a discontinuous 



function),  Gauss-Newton is a variant suited for nonlinear least-squares problems which do 

not require the second derivative, but our problem is not least-squares, thus it is not suited for 

this problem. Nelder-Mead   is a method which do not require the derivative of any sort thus it 

is well suited for this case.  

 

In IRLS, we use weighted least squares, where the weight is dependent on the parameter 

estimate. Thus, we can rewrite the problem as:  

∑𝑤𝑖(𝛽) ⋅ |𝑦𝑖 − 𝛽𝑇𝑥𝑖|
2

𝑛

𝑖=1

⁡⁡⁡ 

with 𝑤𝑖(𝛽) = 1/|𝑦𝑖 − 𝛽𝑇𝑥𝑖|,  The algorithm is: 

1) Initiate 𝑊0 = 𝐼𝑛×𝑛⁡(the identity) 

2) Solve weighted least squares    𝛽𝑘+1 = (𝑋𝑊𝑘𝑋)
−1
𝑋𝑊𝑘𝑦 

3) Set  𝑊𝑘+1⁡to be a diagonal matrix with  𝑊𝑖𝑖
𝑘+1 = 𝑤𝑖(𝛽

𝑘+1) 

4) Increment 𝑘 and go to 2) 

End loop when  [relative error]   ‖𝛽𝑘+1 − 𝛽𝑘‖ < 𝜖 ⋅ ⁡‖𝛽𝑘‖, with 𝜖 being a small number or 

when  [absolute error]   ‖𝛽𝑘+1 − 𝛽𝑘‖ < 𝜖⁡with 𝜖 being a small number 

c) The call optim(c(0,0), sad, sadGrad ,y,X), computed the MLE for 𝛽, sig is the MLE 

for 𝜎. The for loop perform nonparametric Bootstrap of the parameters. It samples 

pairs of 𝑦𝑖 and 𝑥𝑖 , and run the exact same algorithm as is done for obtaining the 

estimates. 

    

If there is a large deviation between the original estimates and the average of the 

bootstrap, there is problems with bias in the method. By comparison we see that these 

correspond well. The square root of the diagonal of the covariance matrix is the 

standard deviation. Thus the final line illustrate the uncertainty in the estimate [in 

terms of the standard deviation]    

 

Problem 4 

The complete log likelihood is given below and is subject to the constraint  ∑ 𝜋𝑘 = 1𝐾
𝑘=1    

𝑙(𝜃|𝒙, 𝒄⁡) =∑∑𝐼(𝑐𝑖 = 𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

(log 𝜋𝑘 + log𝜙(𝑥𝑖; 𝜇𝑘 , 𝜎
2⁡))

= ⁡∑∑𝐼(𝑐𝑖 = 𝑘)(log𝜋𝑘 −
1

2
log(2𝜋𝜎2) −

1

2

(𝑥𝑖 − 𝜇𝑘)

𝜎2

2

)

𝐾

𝑘=1

⁡

𝑛

𝑖=1

 

𝑄(𝜃|𝜃(𝑡)) = 𝐸(𝑙(𝜃|𝒙, 𝒄⁡)|𝒙, 𝜃(𝑡))

= Const +∑∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡)) (log𝜋𝑘 −
1

2
log(𝜎2) −

1

2

(𝑥𝑖 − 𝜇𝑘)

𝜎2

2

)⁡

𝐾

𝑘=1

⁡

𝑛

𝑖=1

 

𝑄𝐿(𝜃|𝜃
(𝑡)) = 𝑄(𝜃|𝜃(𝑡)) + 𝜆 ⋅ (1 −∑𝜋𝑘

𝐾

𝑘=1

) 

 



𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜋𝑘
=∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡)) ⋅

1

𝜋𝑘
⁡

𝑛

𝑖=1

− 𝜆 = 0 

 

𝜋𝑘 =
1

𝜆
∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))⁡

𝑛

𝑖=1

 

1 = ∑𝜋𝑘

𝐾

𝑘=1

=
1

𝜆
∑∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))

𝐾

𝑘=1

=⁡
1

𝜆
⋅ 𝑛

𝑛

𝑖=1

⁡⇒ 𝜆 = 𝑛 

 

𝜕𝑄𝐿(𝜃|𝜃
(𝑡))

𝜕𝜇𝑘
=∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡)) (

(𝑥𝑖 − 𝜇𝑘)

𝜎2
)⁡

𝑛

𝑖=1

= 0 

𝜇𝑘∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡)) =∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))𝑥𝑖⁡

𝑛

𝑖=1

⁡

𝑛

𝑖=1

 

𝜇𝑘 =
∑ 𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))𝑥𝑖⁡
𝑛
𝑖=1

∑ 𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))⁡𝑛
𝑖=1

 

 

𝜕𝑄𝐿(𝜃|𝜃
(𝑡))

𝜕𝜎2
=∑∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))(−

1

2𝜎2
+
1

2

(𝑥𝑖 − 𝜇𝑘)
2

(𝜎2)2
)

𝐾

𝑘=1

⁡

𝑛

𝑖=1

= 0 

∑∑ 𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))

𝐾⁡

𝑘=1⁡

=
1

𝜎2
∑∑𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))(𝑥𝑖 − 𝜇𝑘)

2

𝐾

𝑘=1

𝑛

𝑖=1

⁡

𝑛

𝑖=1

 

𝜎2 =
∑ ∑ 𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡))(𝑥𝑖 − 𝜇𝑘)

2𝐾
𝑘=1 ⁡𝑛

𝑖=1

𝑛
 

 

𝑃(𝐶𝑖 = 𝑘|𝒙, 𝜃(𝑡)) =
𝑝(𝐶𝑖 = 𝑘, 𝑋𝑖 = 𝑥𝑖|⁡𝜃

(𝑡))

𝑝(𝑋𝑖 = 𝑥𝑖|𝜃
(𝑡))⁡

=
𝜋𝑘𝜙(𝑥𝑖; 𝜇𝑘 , 𝜎𝑘

2⁡)

∑ 𝜋𝑘𝜙(𝑥𝑖; 𝜇𝑚, 𝜎𝑚
2 ⁡)𝐾

𝑚=1

=
𝜋𝑘𝜙(𝑥𝑖; 𝜇𝑘 , 𝜎𝑘

2⁡)

∑ 𝜋𝑘𝜙(𝑥𝑖; 𝜇𝑚, 𝜎𝑚
2 ⁡)𝐾

𝑚=1

⁡⁡ 

 

b) The marginal likelihood: 

𝐿(𝜃|𝒙) =∏(∑𝜋𝑘

𝐾

𝑘=1

𝜙(𝑥𝑖; 𝜇𝑘 , 𝜎
2⁡))

𝑛

𝑖=1

 

The observed information matrix is the negative Hessian matrix of the log likelihood 

evaluated around  the MLE estimate, it can be approximated by a numerical computation of 

the Hessian. The important ting to be aware off is that our computation (of the negative 

hessian) should provide a symmetric positive definite matrix.  Let Δ𝜃𝑖 be a vector being zero 



except for element component i,. Further let the change be positive and have size  ||Δ𝜃𝑖||. The 

diagonal is then: 

𝜕2 log 𝐿(𝜃|𝑥)⁡

𝜕𝜃𝑖
2 ≈

−2 ⋅ log 𝐿(𝜃|𝑥)⁡ + log 𝐿(𝜃 + Δ𝜃𝑖|𝑥)⁡ + log 𝐿(𝜃 − Δ𝜃𝑖|𝑥)⁡

||Δ𝜃𝑖||
2⁡

 

  The off diagonal is e.g: 

𝜕2 log 𝐿(𝜃|𝑥)⁡

𝜕𝜃𝑖𝜕𝜃𝑗
≈
log 𝐿(𝜃 + Δ𝜃𝑖 + Δ𝜃𝑗|𝑥)⁡ + log 𝐿(𝜃|𝑥)⁡ − log 𝐿(𝜃 + Δ𝜃𝑖|𝑥)⁡ − log 𝐿(𝜃 + Δ𝜃𝑗|𝑥)⁡

||Δ𝜃𝑖||||Δ𝜃𝑗||⁡⁡
 

  

The parameter ||Δ𝜃𝑖|| is important to select to provide a stable estimate. Not too small to 

divide by a small number. Not too large since the error in the derivative becomes too large.  

The Fisher information can also be approximated as n times the covariance of the individual  

score functions [derivative of the marginal log likelihood] evaluated around  the MLE estimate. 

So it is possible to compute the individual contributions numerically as well.  

c) The change is that the probability weight in the EM estimator  also becomes conditioned to 

the partially erroneous label.  

𝑃(𝐶 = 𝑘|𝐹 = 𝑓, 𝑋 = 𝑥⁡) ∝ 𝑃(𝐶 = 𝑘) ⋅ 𝑃(𝐹 = 𝑓|𝐶 = 𝑘) ⋅ 𝑝(𝑥|𝐶 = 𝑐) 

∝ 𝜋𝑘[𝑝𝐹 + (𝑝𝑇 − 𝑝𝐹)𝐼(𝑘 = 𝑓)]𝜙(𝑥|𝜇𝑘 , 𝜎⁡) 
Where: 

𝑃(𝐹 = 𝑓|𝐶 = 𝑘) = 𝑝𝐹 + (𝑝𝑇 − 𝑝𝐹)𝐼(𝑘 = 𝑓) 
 

d) The intuitive way to update the estimate is just to take the average probability of being right: 

𝑝𝑇 =
1

𝑛
∑𝑃(𝐶𝑖 = 𝑓𝑖|𝑥𝑖, 𝑓𝑖, θ

t)

𝑛

𝑖=1

 

For one case we have we have the joint distribution:   

𝑃(𝐶𝑖, 𝑓𝑖, 𝑥𝑖) ∝∏[⁡𝜋𝑘𝜙𝑘(𝑥𝑖|𝜇𝑘 , 𝜎)𝑝𝑘(𝑓𝑖)⁡]
𝐼(𝑐𝑖=𝑘)

𝐾

𝑘=1

 

𝑝𝑘(𝑓𝑖) = 𝑝𝑇
𝐼(𝑘=𝑓𝑖)𝑝𝐹

𝐼(𝑘≠𝑓𝑖) = 𝑝𝑇
𝐼(𝑘=𝑓𝑖) [

1 − 𝑝𝑇
𝐾 − 1

]
𝐼(𝑘≠𝑓𝑖)

⁡ 

This gives the complete log likelihood: 

𝑙(𝜃|𝒙, 𝒄⁡) =∑∑𝐼(𝑐𝑖 = 𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

(log 𝜋𝑘 + log𝜙(𝑥𝑖; 𝜇𝑘 , 𝜎
2⁡) + 𝐼(𝑘 = 𝑓𝑖) log(𝑝𝑇) 

+𝐼(𝑘 ≠ 𝑓𝑖) log(1 − 𝑝𝑇) − 𝐼(𝑘 ≠ 𝑓𝑖)log⁡(𝐾 − 1)) 

Which will give the result.  

 

Problem 5 

a) We skip the first part of the samples since we do not have a guarantee that the initial 

sample is representative. The distribution will converge towards the true distribution 



[given sufficient regularity]. Thus we exclude the sample in order to avoid unnecessarily 

bias in our computations. The period to we skip is called burn-in.  

 

The GR-statistic measure how similar averages are in the parallel chains. If there is a full 

match the statistics is 1.  It is somewhat strange that the GR-statistic increases up until 105 

samples for the variance parameters. This indicates that the four chains are more similar 

than in the initial part than after a while. This might be indications of apparent 

convergence, and it is certainly a sign that  we need longer chains.  To assure 

convergence we need at least 106 samples. In this case we see that there has been a 

stabilizing effect and that the chains have a uniform decay  from 5x105 to 106,also  a rule 

of thumb is that  the Gelman-Rubin statistics should be below 1.05 for all parameter this  

occurs first time for  106.  

 

 

𝑝(𝑥, 𝑦|𝑧, 𝛽0, 𝛽, 𝜎
2, 𝜏2) ∝ 𝑝(𝑥, 𝑦, 𝑧, 𝛽𝑜, 𝛽, 𝜎

2, 𝜏2)  

= 𝑝(𝛽0)𝑝(𝛽)𝑝(𝜎
2)𝑝(𝜏2)∏𝜙(𝑦

𝑖
|𝛽

0
+ 𝛽𝑇𝑥

𝑖
, 𝜎2) ⋅∏𝜙(𝑥𝑗𝑖|𝑧𝑗𝑖, 𝜏

2)

𝑞

𝑗=1

⁡⁡

𝑛

𝑖=1

 

∝
1

𝜎2(1+
𝑛
2
)
⋅

1

𝜏2(1+𝑛/2)
exp (−

1

2𝜎2
∑⁡⁡(𝑦𝑖 − 𝛽0 − 𝛽𝑥𝑖)

2

𝑛

𝑖=1

)exp(−
1

2𝜏2
∑⁡⁡(𝑧𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1

) 

The individual becomes: 

By ignoring all factors not including sigma, we recognize the parameters in the inverse 

gamma  

𝑝(𝜎2⁡|𝛽0, 𝛽, 𝜏
2, 𝑥, 𝑧, 𝑦⁡) = invGam(shape =

n

2
, scale =

1

2
∑⁡⁡(𝑦𝑖 − 𝛽0 − 𝛽𝑥𝑖)

2

𝑛

𝑖=1

 

By ignoring all factors not including tau, we recognize the parameters in the inverse gamma  

𝑝(𝜏2|𝛽0, 𝛽, 𝜎
2, 𝑥, 𝑧, 𝑦⁡) = invGam(shape =

n

2
, scale =

1

2
∑⁡⁡(𝑥𝑖 − 𝑧𝑖)

2

𝑛

𝑖=1

 

We just get the likelihood part here, this is like for standard regression, we can compute the 

betas jointly or individually, this gives normal distributions:  

𝑝(𝛽0|𝛽, 𝜎
2, 𝜏2, 𝑥, 𝑧, 𝑦⁡) ∝ exp(−

𝑛

2𝜎2
(𝛽0

2 − 2𝛽0 ⋅
1

𝑛
∑⁡(𝑦𝑖 − 𝛽𝑥𝑖)

𝑛

𝑖=1

)) 

 

𝑝(𝛽|𝛽0, 𝜎
2, 𝜏2, 𝑥, 𝑧, 𝑦⁡) ∝ exp(−

∑ 𝑥𝑖
2𝑛

𝑖=1

2𝜎2
(𝛽2 − 2𝛽 ⋅

1

∑ 𝑥𝑖
2𝑛

𝑖=1

∑⁡𝑥𝑖(𝑦𝑖 − 𝛽𝑜)

𝑛

𝑖=1

)) 



 

the precision is the factor multiplying ½ in front of the brackets, the mean is the 

factor multiplying 2 times the parameter.  

 

For the explanatory variable, we get one factor  from each product (or one term 

from each sum in the exponential) 

𝑝(𝑥𝑖|𝛽0, 𝛽, 𝜎
2, 𝜏2, 𝑥−𝑖, 𝑧, 𝑦⁡) ∝ ⁡exp⁡(−

1

2𝜎2
(𝛽𝑥𝑖 − [𝑦𝑖 − 𝛽0])

2 ⁡−
1

2𝜏2
(𝑥𝑖 − 𝑧𝑖)

2) 

 

Getting this on quadratic form: exp⁡(−
1

2
𝑄 ⋅ (𝑥𝑖 − 𝑏)2), we find the precision and 

the mean in the normal distribution 

𝑄 =
𝛽2

𝜎2
+

1

𝜏2
⁡⁡⁡⁡,⁡⁡⁡⁡𝑏 = (

𝛽[𝑦𝑖 − 𝛽0]

𝜎2⁡
−
𝑧𝑖
𝜏2
) 𝑄⁄  

 

 


