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Optimization and decision
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NP hard: solution to one such problem can be used to solve any NP problem 

NP complete: problem is both NP and NP hard 



NP - hard    
• P (Polynomial-time): decision problems that can be solved in polynomial time

• NP (Non-deterministic Polynomial-time): decision problems 

that can be checked in polynomial time 

• We do not know if NP problem  can be solved in  polynomial time

• NP-hard: (Non-deterministic Polynomial-time hard) problems that are 

"at least as hard as the hardest problems in NP“ Solution to  a NP-hard problem can 

be used to solve any NP problem 

• NP-complete: subclass which are both NP and NP-hard. 

The hardest problems among  NP. 
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FigBy Behnam Esfahbod, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=3532181

Which universe

do we live in?

𝑃 ≠ 𝑁𝑃
or

𝑃 = 𝑁𝑃

Most people

think this



Check versus solve

• How do you «check» a problem without solving it?

– If someone propose a solution 𝜃∗ you can check it

• evaluate the function  𝑓(𝜃) for 𝜃∗

• Is 𝑓 𝜃∗ > 𝑐 ?

• We still do not know how they got the value [lucky guess??]

• We still do not know if it is the global optimum

• It is harder to find the solution argmax 𝑓 𝜃
– solve it, find the global optimum with guarantee
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NP-complete problems (how hard can it be?)
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Model selection
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Need for heuristics 

• When no algorithm guaranties a global maximum 

(within a time frame)

• Heuristics: Algorithms that find a good local optima 

within tolerable time

– Local search

– Simulated annealing

– Tabu algorithm

– Genetic algorithm

8STK 4051 Computational statistics, spring 2022



Local search
• Iterative improvement: 𝜃(𝑡) → 𝜃(𝑡+1) (Move or step)

• Limiting the search to a local neighborhood 𝒩(𝜽(𝑡))
at any particular iteration

– Example model selection : (change only one component)

𝒩 𝜽 𝑡 = {𝜽: ∃ 𝑙 such that 𝜃𝑗 = 𝜃𝑗
𝑡
for 𝑗 ≠ 𝑙 }

• Steepest ascent

• Random ascent: 

– Test random samples 𝜽𝑆from 𝒩 𝜽 𝑡

– 𝜃(𝑡+1) first sample such that 𝑔 𝜽𝑆 > 𝑔 𝜽 𝑡

• Balance:  neighborhood size vs speed
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𝜃(𝑡+1) = argmax
𝜽∈𝒩 𝜽 𝑡 𝑔(𝜽)



Random starting points combined with 

local search 

• Select many starting points 

– Stratified or random sampling

• Run local search from each staring point

– Random or steepest ascent

• Select best final answer

• Works very well in many cases

• Random starting point can be used for any 

optimization method. (Build confidence in optimum) 
10STK 4051 Computational statistics, spring 2022



Example – Traveling salesperson problem
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Example – Traveling salesperson problem
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• Example: Traveling salesperson

Check: 

Compute the travel time along one specific path 

N – operations  (N = number of cities)

Solve:

Find the optimal route for the traveling 

salesman

N!   possibilities  (number of orderings)



Simulated annealing
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= Cooling schedule

Store «best so far» in addition to iterations (for the end game)



Practical issues – Simulated annealing
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the deepest local minima.



Traveling salesperson Simulated annealing
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Simulated annealing for continuous function
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in



Genetic algorithm background
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Genetic algorithm (iterations)

• Each iteration t contain a collection/population of solutions, 𝜃1
(𝑡)
, … , 𝜃𝑃

(𝑡)

• Individuals of next generation  𝜃𝑗
(𝑡+1)

are based on two parents and a 

stochastic component: 

𝜃𝑗
(𝑡+1)

= 𝑔(𝜃𝑘
𝑡
, 𝜃𝑙

(𝑡)
)

• Selection mechanism

– Parents selected with probabilities related to fitness 𝑓 𝜃

• Genetic operators

– 𝜃𝑘
𝑡
= (100110001), 𝜃𝑙

𝑡
= 110101110 ⇒ 𝜃𝑗

𝑡+1
= (1? 01? ? ? ? ? ) ? =random

– 𝜃𝑘
𝑡
= (100110001), 𝜃𝑙

𝑡
= 110101110 ⇒ 𝜃𝑗

𝑡+1
= (100101110) crossover 

• Mutations Randomly change one  (or a few) components

– 10𝟎101110 ⇒ 10𝟏101110

– Assures that the solution is not limited by the initial population
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Schematic example (fig 3.5)
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Population size:   P = 4

Chromosome length:  C=3  (= # of parameters, i.e.  p=3)



Genetic algorithm – Practical issues
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Genetic algorithm baseball salaries
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Covariates are statistics collected during a season

• # runs  scored

• batting average

• on pace percentage

• …

(for model selection)



Tabu algorithms

• Local (random) search weakness

– Next move will in many cases reverse previous move

• Tabu idea:

– Allow downhill move when no uphill move is possible

– Make some moves temporarily forbidden or tabu

– Early form: steepest ascent /mildest decent 

• Move to least unfavorable when there is no uphill move
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Traveling salesperson Tabu

23STK 4051 Computational statistics, spring 2022



Tabu additional rules
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