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Optimization and decision

@ Optimization: Solve maxg f(6)
@ Decision: Is there a 8 € © for which f(8) > c?

@ Optimization problem can be solved by repeatedly solving decision problems for
different values of c.

@ Decision problems that can be solved in polynomial time (O(p") operations) are
generally considered to be efficiently solvable. Called P problems

@ Decision problems that can be checked in polynomial time called NP problems
@ PCNP

@ NP hard: solution to one such problem can be used to solve any NP problem

® NP complete: problem is both NP and NP hard
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NP - hard

P (Polynomial-time): decision problems that can be solved in polynomial time

* NP (Non-deterministic Polynomial-time): decision problems
that can be checked in polynomial time
 We do not know if NP problem can be solved in polynomial time

 NP-hard: (Non-deterministic Polynomial-time hard) problems that are
"at least as hard as the hardest problems in NP“ Solution to a NP-hard problem can
be used to solve any NP problem

« NP-complete: subclass which are both NP and NP-hard.
The hardest problems among NP.

Which universe

Most people do we live in?
think this . P % NP
or S o~ NP-Eomplete
P =NP g

C

FigBy Behnam Esfahbod, CC BY-SA 3.0,
. L i https://commons.wikimedia.org/w/index.php?curid=3532181
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Check versus solve

« How do you «check» a problem without solving it?

— If someone propose a solution 8* you can check it
» evaluate the function f(6) for 6*
e Isf(6*)>c?
» We still do not know how they got the value [lucky guess??]
« We still do not know if it is the global optimum

* [tis harder to find the solution argmax f(6)
— solve it, find the global optimum with guarantee
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NP-complete problems ow hard can it be?)

@ Consider two problems:

e The first can be solved in O(p?) operations
@ The second O(p!) operations.
@ They both require 1 minute of computing time when p = 20.

Time to solve problem of order. ..

p O(p*) O(p!)
20 1 minute 1 minute
21 1.10 minutes 21 minutes
25 1.57 minutes 12.1 years

30 2.25 minutes 207 million years
50 6.25 minutes 2.4x10% years

@ There are optimization problems that are inherently too difficult to solve exactly by
traditional means.

@ Many problems in bioinformatics, experimental design, and nonparametric
statistical modeling, for example, require combinatorial optimization.

@ (The content of this slide was kindly provided by Givens & Hoeting)
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Model selection

@ Genetic association studies: Which genes influence a certain phenotype
(presence of cancer, size, etc)

@ Linear model including all possible variables:

p
Yi =Bo + ZB]XI] + €
=1

@ Reasonable to assume that some x;’s do not influence the response, modification:
p
Yi=Bo+ > vBiXj+ei
j=1
where «y; € {0, 1}.

@ 2P possible models, how to choose the best one?
e p=20,2° =1048576, p = 100, 2° = 1.267651 * 10%°

@ Combinatorial problem, discrete optimisation
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Need for heuristics

« When no algorithm guaranties a global maximum
(within a time frame)

« Heuristics: Algorithms that find a good local optima
within tolerable time
— Local search
— Simulated annealing
— Tabu algorithm
— Genetic algorithm
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Local search

lterative improvement: (&) — 9(¢+1  (Move or step)

Limiting the search to a local neighborhood N (8()
at any particular iteration

— Example model selection : (change only one component)
N(B(t)) = {6: 3 [ such thatg; = Gj(t) forj #1}
Steepest ascent
g(t+1) — argmax OEN(B(t)) g(e)
Random ascent:
— Test random samples @sfrom ' (9®)
- 9+ first sample such that g(8s) > g(8®)

Balance: neighborhood size vs speed
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Random starting points combined with
local search

« Select many starting points
— Stratified or random sampling

* Run local search from each staring point
— Random or steepest ascent

« Select best final answer
« Works very well in many cases

 Random starting point can be used for any
optimization method. (Build confidence in optimum)
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Example — Traveling salesperson problem

@ A salesman needs to visit p cities
@ Each city visited only once
@ What is the minimum distance needed in order to visit all the cities?

@ Travel salesman_greedy.R
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Example — Traveling salesperson problem

@ A salesman needs to visit p cities
@ Each city visited only once
@ What is the minimum distance needed in order to visit all the cities?

« Example: Traveling salesperson
Check:
Compute the travel time along one specific path
N — operations (N = number of cities)

Solve;

Find the optimal route for the traveling
salesman

N! possibilities (number of orderings)
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Simulated annealing

@ Annealing (chemistry)

@ Heating up a solid (increasing energy) and then cooling down (decreasing energy)
@ Slow cooling: State with minimal energy
e Fast cooling: Local minima

@ Simulated annealing: Numerical algorithm resembling annealing
min f(6)

7
1: Start with 8(©)

2: At stage j: Repeat m; times
o Generate a candidate solution 8* € A/ (81)))
e Put

ot=1) _ J6° with probability min(1, exp{[f(8) — £(6*)]/7;}
16D otherwise

3: Update 77,1 = a(7;) and mj,+ = B(m;) = Cooling schedule

o If f(8*) < f(8), we always move to candidate solution
o If f(8*) > f(8"), we may move to candidate solution
e For 7; large, high probability for moving ("high temperature")
e For 7; small, small probability for moving ("low temperature")
@ Makes it possible to move out of modes

@ Store «best so far» in addition to iterations (for the end game)
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Practical issues — Simulated annealing

@ Neighborhoods

e Problem dependent, but small neighborhoods typically most efficient
e Need a neighborhood so that all solutions in 2 communicate:

@ For all 8, 6%, there exist a finite set 84, ..., 8 such that
61 € N (0),6,1 e N(6)forj=1,.... k—1,6" € N(6k)

@ Proposals
@ Most common to choose uniformly within A/(8)

@ Efficiently calculation of f(67)
e In many cases f(6*) can be efficiently updated from £(6)

@ Cooling schedule: 1j+1 = a(77) and mj.1 = B(my)
o If m; =1,then 7; = ¢/log(1 + j) guarantees asymptotic convergence to global
minimum
@ cis the depth, the smallest increase needed to escape the deepest local minima.
e In practice, 7, = ¢/log(1 + j) results in too slow convergence, faster cooling schedules

typically used
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Traveling salesperson Simulated annealing

@ Neighborhood: Swap the order of two components
e Will lead to that all solutions communicate

@ Proposal: Draw two indices within {1, ..., p} randomly
@ Cooling schedule: my =1, 177 =1/log(1 +j) or=10/i
@ Updating f(B*) from f(8): Assume j < k are swapped

f(67) —Zd (7). P(01:1))

=f(9) +d(P(9;_1). () + d(P(6}). P(6] 1))+
d(P(6k—1). P(6k)) + d(P(6k). P(Fk, 1)) —
d(p(6j-1). p(6;)) — d(p(6)). P(6)+1))—
d(P(€k-1). P(6k)) — d(P(6k). P(6k+1))

@ Travel salesman SA.R
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Simulated annealing for continuous function

@ Simulated annealing can equally be used for continuous functions
@ Main change: Define neighborhood in continuous space
o Example: N(0) = {6* : 3j suchthat 6; = 0, k # j}
@ Can choose f(8) = L(0) or f(8) = £(0)
@ Typically prefer f(8) = £(6) because

@ The depth parameter ¢ will usually be smaller
e ltis typically easier to update £(0)
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Genetic algorithm background

@ Mimics the process of Darwinian natural selection

@ Candidate solutions to a maximization problem are envisioned as biological
organisms represented by their genetic code.

@ The fitness of an organism is analogous to the quality of a candidate solution

@ Breeding among highly fit organisms provides the best opportunity to pass along
desirable attributes to future generations

@ Breeding among less fit organisms (and mutations) ensures population diversity

@ Darwin: The population evolve to become increasingly fit
@ Consider again maximization of f(8)
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Genetic algorithm (iterations)

 Each iteration t contain a collection/population of solutions, Hl(t), ...,ngt)

 Individuals of next generation 6( *D are based on two parents and a

stochastic component:

t+1 t
6D = g, 0

« Selection mechanism
— Parents selected with probabilities related to fithess f(0)

« Genetic operators
- 6 = (100110001), 6 = (110101110) = 6"V = (170127?7?) 2 =random
- 6Y = (100110001), 6" = (110101110) = " = (100101110)  crossover

« Mutations Randomly change one (or a few) components

- (100101110) = (101101110)
— Assures that the solution is not limited by the initial population

STK 4051 Computational statistics, spring 2022 18



Ui0O s Matematisk institutt

Det matematisk-naturvitenskapelige fakultet

Schematic example (fig 3.5)

Generation Generation
t t+1
= 110 110 X 1[L0 110
7 010\\ * [0][L 0 010 1011
sl 101 \\\110 1 1[0 111
ET 000\\\\*10! ( [Foo 100

Selection Crossover Mutation

Population size: P =4
Chromosome length: C=3 (= # of parameters, i.e. p=3)
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Genetic algorithm — Practical issues

@ Size of population, P

e For binary components, suggestion: p < P < 2p
e For permutations, suggestion 2p < P < 20p

@ Mutation rate, u

@ Low, typically 1%
e Theoretical results: = 1/poru = 1/(PvC)

@ Selection of parents
Probability proportional to f(egk))
Probability proportional to exp(f(egk)))

@
@
e Probability proportional to rank of f(ng))
Q
Q

One parent completely random
Tournament selection

@ Individuals at iteration t randomly divided into k clusters
@ Best fitted individuals within each cluster used as parents at iteration ¢ + 1

@ Introducing population gap
e Only a proportion, G, is replaced between each generation
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Genetic algorithm baseball salaries

@ Salaries for n = 337 baseball players
@ p = 27 possible covariates, 227 = 134 217 728 possible models

Covariates are statistics collected during a season
« #runs scored
* Dbatting average
* 0N pace percentage

@ Genetic algorithm (for model selection)
e Starting with P = 100 models selected randomly
@ Choose two parents with probabilities proportional to exp(—AIC)
e For each component choose the state from one of the parents randomly
e Allow mutation (change) with probability ;. = 0.01
@ Baseball genetic.R
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Tabu algorithms

* Local (random) search weakness
— Next move will in many cases reverse previous move

« Tabu idea:
— Allow downhill move when no uphill move is possible
— Make some moves temporarily forbidden or tabu

— Early form: steepest ascent /mildest decent
* Move to least unfavorable when there is no uphill move
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Traveling salesperson Tabu

@ Neighborhood: Swap the order of two components
@ Move: To the best state in the neighborhood even if it is worse

@ Tabu: Do not allow to pick two components that have been selected in the last k
iterations

@ Implementation:
o Make a table of all possible pairs that can be picked, a p(p — 1) x 2 table

e Make a list H containing the last k pairs that have been picked (references to the rows
in the table above)

e When searching within neighborhood, do not consider those pairs contained in H

@ When found the best pair, remove the first element of H and add the new pair to the
end of H

@ Travel salesman_ tabu.R
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Tabu additional rules

@ Aspiration criterion:

e Allow a tabu move if it is better than the best found state so far
e Allow a tabu move if it gives a large change

@ Diversification
e Penalize moves to a worse state if such a move has happened many times before

@ Intensification
e Reward moves that retain features that have shown to be important earlier

@ Variable selection: If inclusion of component j correspond to many good solutions, reward
moves including this component
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