
Solution sketch to problems:  STK 4051 / STK 9051 exam spring 2023 

Problem 1 

a) Integral is approximated by: 

∫ ℎ(𝒙)𝑔(𝒙)𝑑𝒙 ≈

𝑅𝑛

ℎ𝑎̅̅ ̅ =
1

𝐵
∑ ℎ(𝒙𝑖)

𝐵

𝑖=1

 

If the samples are independent, the error in approximation measured in terms of the 

variance is:  Var{ℎ𝑎̅̅ ̅} =
Var𝑔{ℎ(𝑋)} 

𝐵
. Where the subscript indicate that the variance is over the 

distribution 𝑔(𝒙). Thus if Var{ℎ(𝑋)} < ∞, and the samples are independent then the limit is 

zero when  𝐵 → ∞.  

b) Integral can be approximated by: 

∫ ℎ(𝒙)𝑓(𝒙)𝑑𝒙 ≈

𝑅𝑛

ℎ𝑏̅̅ ̅ =
1

𝐵
∑

𝑓(𝒙𝑖)

𝑔(𝒙𝑖)
ℎ(𝒙𝑖)

𝐵

𝑖=1

  

If the samples are independent, then we can utilize the result from above with the function 
𝑓(𝒙)

𝑔(𝒙)
ℎ(𝒙), thus the error in approximation measured in terms of the variance is:   

Var{ℎ𝑏̅̅ ̅} =
Var𝑔 {

𝑓(𝑿)
𝑔(𝑿)

ℎ(𝑿)} 

𝐵
, 

where the subscript indicate that the variance is over the distribution 𝑔(𝒙).   For the 

convergence:  If Var𝑔 {
𝑓(𝑿)

𝑔(𝑿)
ℎ(𝑿)} < ∞, and the samples are independent then the limit is 

zero when  𝐵 → ∞, which gives convergence.  Importantly however for the solution to 

converge to the right number, we also need that the support of 𝑔(𝑥)  contains the support of  

ℎ(𝑥)𝑓(𝑥).  Alternatively we could require  𝐸𝑓 {
𝑓(𝑿)

𝑔(𝑿)
ℎ(𝑿)2} < ∞ .  

Utilizing 𝑞(𝑥) rather than 𝑓(𝑥) we get: 

ℎ𝑏2
̅̅ ̅̅ =

∑
𝑞(𝒙𝑖)
𝑔(𝒙𝑖)

ℎ(𝒙𝑖)
𝐵
𝑖=1

∑
𝑞(𝒙𝑖)
𝑔(𝒙𝑖)

𝐵
𝑖=1

 

These methods are denoted by the common name importance sampling.  Using un-

normalized weights and normalized weights respectively. 

 

c) In step 2 A1, we sample form the standard normal distribution using the inversion 

formula.  𝑃(𝑋 < 𝑥) = 𝑃(Φ−1(𝑢) < 𝑥) = 𝑃(𝑢 < Φ(𝑥)) = Φ(𝑥).  

The last equality is a consequence of the normal distribution, the second to last is 

due to the monotonicity of the transform. 

In step 2 A2, we sample form an exponential distribution shifted such that the 

minimum value is 𝑥0  rather than 0.  

 

In formula (3) we use Monte Carlo simulation, such as (1) to compute the integral.   



In formula (4) we use importance sampling. Note that we do not need to add the 

indicator since all samples are larger than 𝑥0.   

d) Since the jitter is much stronger for algorithm 1 than for algorithm 2. This indicate 

that the sample variance is larger for this computation. Theoretically, it is much 

better to have all samples centered at the region where the function is non-zero, 

since we the investigate the part which contribute to the integral much better.  Also 

note that the decay of exponential distribution is slower than the normal 

distribution. The latter is important for the variance of the ratio.  Var𝑔 {
𝑓(𝑿)

𝑔(𝑿)
ℎ(𝑿)}. 

The jitter is caused by Monte Carlo variability, i.e. the fact that we do not have an 

infinite number of samples. In order to reduce the variability, we can increase the 

number of samples. It is also possible to trade some variance in the estimate for bias, 

by using common random numbers (𝑢𝑖 , 𝑖 = 1… , 𝐵) for all values of 𝑥0.  

 

  

Problem 2 

a) The likelihood is: 

𝐿(𝑝, 𝜆 ) =∏(𝑝 ⋅ λ ⋅ exp−𝜆𝑥 + (1 − 𝑝) ⋅ λ2𝑥 ⋅ exp−𝜆𝑥)

𝑛

𝑖=1

 

 

In In Newton algorithm, we update the estimate with 

𝑥𝑖+1 = 𝑥𝑖 − (𝐻𝑓)
−1
⋅   ∇𝑓 

Where 𝑓(𝑥) is the function, we want to optimize, ∇𝑓 is the gradient of this 

function, and 𝐻𝑓 is the Hessian.  In the quasi-Newton algorithm we use an 

approximation to replace the inverse Hessian. This expression is faster to 

compute. Note that even if the quasi-newton algorithm converges the 

approximation for the Hessian need not converge to the Hessian.  

 

In the table we clearly see that there are two modes. One of the modes proposes 

a probability which is larger than zero. To avoid this issue, we could either use 

constrained optimization or transform the probability into an unconstrained 

parameter, e.g. 𝜃 = log (
1

𝑝
− 1) .  

  

b) One expression for the complete log likelihood is: 

𝑙(𝑝, 𝜆|𝒙, 𝑪) =∑𝐼(𝐶𝑖 = 1)[log 𝑝 + log 𝜆 − 𝜆𝑥𝑖]

𝑛

𝑖=1

+  ∑𝐼(𝐶𝑖 = 2)[log(1 −𝑝) + 2 log 𝜆 + log (𝑥𝑖) − 𝜆𝑥𝑖]  

𝑛

𝑖=1

 

The Q(|) function is the expected value of the complete log likelihood given the 

observed data and the current estimate of the parameters.  In the expression for the 



complete log likelihood above we see that the only random ness is in the indicator 

functions, which are in the expression in a sum. The expectation can be applied to each 

term in the sum, when we use that 𝐸(𝐼(𝐶𝑖 = 1)|𝒙, 𝑝, 𝜆 ) = 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝑝, 𝜆 ), we get 

the desired result. 

𝑃(𝐶𝑖 = 1|𝑥𝑖 , 𝑝, 𝜆 ) =
𝑃(𝐶𝑖 = 1, 𝑥𝑖|𝑝, 𝜆 )

𝑃(𝑥𝑖|𝑝, 𝜆)

=
𝑃(𝐶𝑖 = 1|𝑝, 𝜆 )𝑝(𝑥𝑖|𝐶𝑖 = 1, 𝑝, 𝜆 )

𝑃(𝐶𝑖 = 1|𝑝, 𝜆 )𝑝(𝑥𝑖|𝐶𝑖 = 1, 𝑝, 𝜆 ) + 𝑃(𝐶𝑖 = 2|𝑝, 𝜆 )𝑝(𝑥𝑖|𝐶𝑖 = 2, 𝑝, 𝜆 )
 

 

=
𝑝 ⋅ Exp(𝑥𝑖; 𝜆)

𝑝 ⋅ Exp(𝑥𝑖; 𝜆) + (1 − 𝑝) ⋅ Erlang(𝑥𝑖; 2, 𝜆)
 

Where we have used definition of conditional probability and inserted the expressions. 

c) Differentiate Q(𝑝, 𝜆|𝑝(𝑡), 𝜆(𝑡)), wrt 𝑝: 

 

∂Q

𝜕𝑝
=∑𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝑝

(𝑡), 𝜆(𝑡) ) [
1

𝑝
] −  ∑(1 − 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝑝

(𝑡), 𝜆(𝑡) )) [
1

1 − p
] = 0  

𝑛

𝑖=1

𝑛

𝑖=1

 

⇒   𝑝 =
1

𝑛
∑𝑃(𝐶𝑖 = 1|𝑥𝑖 , 𝑝

(𝑡), 𝜆(𝑡) )

𝑛

𝑖=1

 

 

Differentiate Q(𝑝, 𝜆|𝑝(𝑡), 𝜆(𝑡)), wrt 𝜆: 

∂Q

𝜕𝜆
=∑𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝑝

(𝑡), 𝜆(𝑡) ) [
1

𝜆
− 𝑥𝑖] +  ∑(𝑃(𝐶𝑖 = 2|𝑥𝑖 , 𝑝

(𝑡), 𝜆(𝑡) )) [
2

λ
− 𝑥𝑖] = 0  

𝑛

𝑖=1

𝑛

𝑖=1

 

⇒   𝜆 =
∑ 𝑃(𝐶𝑖 = 1|𝑥𝑖 , 𝑝

(𝑡), 𝜆(𝑡) )𝑛
𝑖=1 + 2 ⋅ 𝑃(𝐶𝑖 = 2|𝑥𝑖, 𝑝

(𝑡), 𝜆(𝑡) )

∑ 𝑥𝑖
𝑛
𝑖=1

 

 

In the EM algorithm each iteration will improve the likelihood from 2a. 

 

d) In a non-parametric bootstrap, we resample the dataset with replacement to create a dataset 

of equal size as the initial. Then we estimate the parameters using the prescribed algorithm. 

One repeat of this procedure creates one point in the scatterplot in figure 2. We repeat this 

procedure B times.  And uses the set of estimates to represent the sampling uncertainty of 

the estimator. In the figure we see that the parameter estimates are highly correlated 

(negative correlation). The lower the value of 𝑝 the larger the estimate of 𝜆. This is natural 

since reducing 𝑝 means that we overlook more samples, which would increase the number 



of events in the same time interval.  The samples seems to have two modes. One close to 

𝑝 = 1 and one centred around 𝑝 = 0.75. There is no obvious reason for this. 

 

Problem 3 

a) The conditional probability is computed to proportionality by: 

𝑝(𝝀, 𝛽|𝛼, 𝛾, 𝛿, 𝒙, 𝒕) ∝ 𝑝(𝝀, 𝛽, 𝒙|𝛼, 𝛾, 𝛿, 𝒕)

= 𝑝(𝛽|𝛾, 𝛿, 𝛼, 𝒕)𝑝(𝝀|𝛽, 𝛾, 𝛿, 𝛼, 𝒕)𝑝(𝒙|𝝀, 𝛽, 𝛾, 𝛿, 𝛼, 𝒕)

= 𝑝(𝛽|𝛾, 𝛿)𝑝(𝝀|𝛽, 𝛼)𝑝(𝒙|𝝀, 𝒕)

= 𝑝(𝛽|𝛾, 𝛿)∏𝑝(𝜆𝑖|𝛽, 𝛼)

10

𝑖=1

∏𝑝(𝑥𝑖|𝜆𝑖, 𝑡𝑖)

10

𝑖=1

=
𝛿𝛾𝛽𝛾−1

Γ(𝛾)
exp(−𝛿𝛽)∏

𝛽𝛼 𝜆𝑖
𝛼−1

Γ(𝛼)
exp(−𝜆𝑖𝛽)

10

𝑖=1

∏
(𝜆𝑖𝑡𝑖)

𝑥𝑖  

𝑥𝑖!
exp(−𝜆𝑖𝑡𝑖)

10

𝑖=1

 

Where transition 1 is due to posterior is proportional to the joint distribution 

(conditioned to given parameters 𝛼, 𝛾, 𝛿, 𝒕). Second transition is due to common 

factorization. In transition 3, we impose the dependencies of parameters given in the 

text.  In transition 4, we utilize the prior independence of 𝜆𝑖, and 𝑥𝑖. In the final step 

we impose the distributions. 

Computation of distributions for the Gibbs-sampler: 

𝑝( 𝜆𝑖 |𝛼, 𝛽, 𝛾, 𝛿 𝒕, 𝒙, 𝝀−𝒊)  ∝ 𝜆𝑖
𝛼−1 exp(−𝜆𝑖𝛽) 𝜆𝑖

𝑥𝑖 exp(−𝜆𝑖𝑡𝑖)

∝ 𝜆𝑖
𝛼+𝑥𝑖−1 exp(−𝜆𝑖(𝛽 + 𝑡𝑖)) 

∝ Gamma(𝜆𝑖; 𝛼 + 𝑥𝑖 , 𝛽 + 𝑡𝑖) 

 

𝑝( 𝛽|𝛼, 𝛾, 𝛿, 𝝀, 𝒙, 𝒕) ∝ 𝛽𝛾−1 exp(−𝛿𝛽)∏𝛽𝛼 exp(−𝜆𝑖𝛽)

10

𝑖=1

∝ 𝛽𝛾+10𝛼 −1 exp (−(𝛿 +∑ 𝜆𝑖
10

𝑖=1
) 𝛽 )  

                           ∝ Gamma (β; 𝛾 + 10𝛼, 𝛿 +∑ 𝜆𝑖
10

𝑖=1
) 

 

b) In RH, the 𝑓(𝑥), and 𝑓(𝑥∗) are the target densities, evaluated in the current sample, 𝑥, and 

the proposed sample, 𝑥∗. The function 𝑔(𝑥∗|𝑥), is the density for proposing a change to the 

proposed sample, 𝑥∗from the current sample. The function 𝑔(𝑥∗|𝑥) is the density for the 

reverse proposal.  



M-H pseudo code: 

Initialize 𝑥 = 𝑥0 

For 𝑖 in 1: 𝐵 

 Sample 𝑥∗ ∼ 𝑔(𝑥∗|𝑥𝑖−1) , 𝑢𝑖~Uniform[0,1] 

 Compute 𝑅𝑀𝐻   

 if 𝑢𝑖 < 𝑅𝑀𝐻:  set 𝑥𝑖 = 𝑥
∗ otherwise set 𝑥𝑖 = 𝑥𝑖−1   

 

The transition kernel in Metropolis Hastings (𝑥 ≠ 𝑥∗): 

𝑃(𝑥, 𝑥∗) = 𝑔(𝑥∗|𝑥)max{1,
𝑓(𝑥∗)𝑔(𝑥|𝑥∗)

𝑓(𝑥)𝑔(𝑥∗|𝑥)
} 

 

c) Starting with the integral:  

∫𝑓(𝑥)𝑃(𝑥, 𝑥∗)𝑑𝑥 = ∫𝑓(𝑥∗)𝑃(𝑥∗, 𝑥)𝑑𝑥 = 𝑓(𝑥∗)∫𝑃(𝑥∗, 𝑥)𝑑𝑥
⏟        

= 𝑓(𝑥∗)

1

 

First transition is just utilizing the detailed balance, next we set what is constant in the 

integration outside the integral and recognize that the integral of the transition kernel is 1. 

 

For convergence the Markov chain need to be:  

• Irreducible – possible to move to any value in a finite number of steps 

• Aperiodic – not go into predictable cycles 

• Recurrent – always return to sets that has a positive probability 

 

  


