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UNIVERSITY OF OSLO 

Faculty of mathematics and natural sciences 

Exam in: STK4051/STK9051 –– Computational statistics  

Day of examination:  Monday June 13th 2022 

Examination hours: 09.00 – 13.00.  

This problem set consists of 5 pages, problem 4d is only for STK 9051 

Appendices: None 

Permitted aids:  All examination aids are allowed (e.g. books, online resources, 

WolframAlpha, scientific programming tools, etc.).   

It is not allowed to collaborate or communicate with others during the exam 

about the assignments.  

 

Problem 1  

The Laplace distribution with parameters 𝜇, 𝜎 has the density: 

                                                              𝑓(𝑥|𝜇, 𝜎) =
1

2𝜎
⋅ exp (−

|𝑥 − 𝜇|

𝜎
).                                                     (1) 

The parameters 𝜇 and 𝜎 are denoted location and scale parameters respectively. For a centered Laplace 

distribution 𝜇 =0.  

a) Describe one method to derive exact samples from this distribution. Comment on the method 

chosen, and provide all expressions needed to perform the sampling (as code or formulas).  

 

Problem 2 

In the context of model selection in linear regression, we can use a parameterization of the 

form: 

                                              𝑦𝑖 = 𝛽0 + ∑ 𝛾𝑘𝛽𝑘𝑥𝑘𝑖

𝑝

𝑘=1

+ 𝜀𝑖,   𝑖 = 1, … , 𝑛,                                          (2) 

where 𝑦𝑖 is the dependent variable corresponding to the explanatory variables 

 𝑥𝑖 = [𝑥1𝑖, … , 𝑥𝑝𝑖], 𝜀𝑖 is an error term, 𝛽𝑘, 𝑘 = 0, … 𝑝, are scalar coefficients; and 𝛾𝑘 ∈

 {0,1}, 𝑘 = 1, … 𝑝 are   indicators.  The parameter 𝛾𝑘 is thus 1 if the explanatory variable 𝑥𝑘  is 

a part of the linear regression model. Akaike information criterion is defined as: 
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                                                          𝐴𝐼𝐶 =  2𝑚 − 2 log 𝐿(𝜃|𝑦, 𝑋),                                                 (3) 

where m is the number of parameters in the model and  log 𝐿(𝜃|𝑦, 𝑋), is the log likelihood 

evaluated for the maximum likelihood estimator of the parameters. We want the model which 

minimize the AIC.   

a) Formulate this problem of model selection as a problem of combinatorial optimization 

and give details about how to use a genetic algorithm to solve the problem. In particular 

discuss specific choices of, fitness function, population, selection, crossover and 

mutation in the context of the problem of model selection above. What is the feature 

which makes the genetic algorithm different from local methods based on 

neighborhood, e.g. steepest decent, simulated annealing etc.   

 

Problem 3  

Consider a case of liner regression   

                                                                            𝑦𝑖 = 𝛽𝑇𝑥𝑖 + 𝜀𝑖,   𝑖 = 1, … , 𝑛,                                                   (4) 

where 𝜀𝑖 are independent, identically distributed according to a centered Laplace distribution with scale 

parameter 𝜎, (see problem 1 a).  

a) Write down an expression for the likelihood of the parameters 𝛽 and 𝜎 in this problem. Show 

that the maximum likelihood estimator for 𝛽  can be found as the solution to the minimization 

problem: 

                                  �̂�𝑀𝐿 = argmin
𝛽

∑|𝑦𝑖 − 𝛽𝑇𝑥𝑖|

𝑛

𝑖=1

,                                                                        (5)   

and that the maximum likelihood estimator for  𝜎 is given by: 

                                             �̂�𝑀𝐿 =
1

𝑛
∑|𝑦𝑖 − 𝛽𝑇𝑥𝑖|.

𝑛

𝑖=1

                                                                          (6) 

 

b) In the context of solving problem (5) consider the methods Gauss-Newton, and Nelder-Mead.  

Which of these two methods would you recommend? Argue the case for your selection. An 

alternative method, is the iteratively reweighted least squares (IRLS), give details on how you 

would set up IRLS for problem (5) in terms of pseudocode. 

 

 

c) Figure 1 shows a sample of the regression model from a) having n=100 datapoints.   

 
Figure1: Scatterplot of dependent and independent variables in Problem 3 
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Assume the dependent variable is y where dim(y) is 100×1, and that the design matrix is X, 

where dim(X) is 100×2. The last column in X is just ones.   Consider the R-code: 

 
sad<-function(beta,sigma,y,X){ 
      sum( abs( X%*%beta - y ) ) 
} 
 
sadGrad<-function(beta,y,X){ 
  t(X)%*%sign( X%*%beta-y ) 
} 
 
N= 100 
beta=optim(c(0,0), sad, sadGrad ,ySample,XSample) 
sig=sad(resultoptim$par,ySample,XSample/N 
 
 
B=1000 
est=matrix(0,B,3) 
colnames(est)<-c("slope","intercept",'MAD') 
 
for(i in 1:B){  
  sampleCase  = sample(1:N,N,replace=TRUE) 
  ySample = y[sampleCase] 
  XSample = X[sampleCase,] 
  resultoptim=optim(c(0,0), sad, sadGrad ,ySample,XSample) 
  sig=sad(resultoptim$par,ySample,XSample/N 
  est[i,]=c(resultoptim$par[1],resultoptim$par[2],sig) 
} 

 

After running the code, we get the output:  

 > cat(beta$par,sig) 
 0.9422203 5.2172924 1.050212 
  
 > colMeans(est) 
     slope intercept       MAD  
  0.949150  5.142126  1.043432  
  
 > sqrt(diag(cov(est))) 

     slope  intercept        MAD  
 0.05304239 0.32169059 0.13221354  

 

What is the purpose of the code above, i.e. what does it do?  What is the interpretation 

of the results?  
 

Problem 4 (EM algorithm) 

Consider the mixture model for clustering:  

                                            𝑃(𝐶𝑖 = 𝑘) = 𝜋𝑘,     𝑘 = 1, … , 𝐾 , 𝑖 = 1, … , 𝑛                                       (7) 

                                𝑝(𝑥𝑖|𝐶𝑖 = 𝑘 ) = 𝜙(𝑥; 𝜇𝑘, 𝜎2), 𝑘 = 1, . . 𝐾, 𝑖 = 1, … , 𝑛                          (8) 

Where 𝑥 = (𝑥1, … 𝑥𝑛) is the observations,  𝐶 = (𝐶1, … 𝐶𝑛) is the class labels,  𝜙(𝑥; 𝜇, 𝜎2)  is 

the normal density with mean 𝜇 and variance 𝜎2. Our aim is to obtain maximum likelihood 

estimates of 𝜃 = {𝜎2, 𝜋𝑘 , 𝜇𝑘, , 𝑘 = 1, … , 𝐾} based on observations  𝑥 = (𝑥1, … 𝑥𝑛). The class 

labels 𝐶 are missing, and there is a common standard deviation for all classes. 
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a) In the context of the EM algorithm write down the expression for the complete log-

likelihood, derive the expression for 𝑄(𝜃|𝜃(𝑡)), and derive the update on, 𝜋𝑘 , 𝜇𝑘 ,  and 

𝜎2.  Derive also the expression for 𝑃(𝐶𝑖 = 𝑘|𝑥𝑖, 𝜃(𝑡) ). 

 

b) Write down the expression for the marginal log-likelihood, i.e. the log-likelihood of the 

observed data. After running the code from a to convergence we obtain a point estimate 

of the maximum likelihood estimator. We now want to assess the uncertainty in the 

estimator. Describe how you would use numerical differentiation to assess the 

uncertainty. Give details and highlight choices you make for the evaluation. 

 

c) We are offered a set of labels 𝐹 = (𝐹1, … 𝐹𝑛), which are known to contain some errors. 

The errors are randomly distributed, conditionally independent of 𝑋𝑖 given the class, 

i.e. 𝑝(𝑥𝑖, 𝐹𝑖|𝐶𝑖) = 𝑝(𝑥𝑖|𝐶𝑖)𝑝(𝐹𝑖|𝐶𝑖). Given the true class 𝐶𝑖, the distribution of labels 

are:  

                                           𝑃(𝐹𝑖 = 𝑗|𝐶𝑖 = 𝑘) = {
𝑝𝑇 𝑗 = 𝑘,
𝑝𝐹 𝑗 ≠ 𝑘,

                                              (9) 

where we have the relation 𝑝𝑇 + (𝐾 − 1)𝑝𝐹 = 1.  How would you modify the 

expressions in part a) to include this information in the estimation?    In this task 

consider 𝑝𝑇 to be known in advance.  

 

d) For STK9051 only. How would you include estimation of  𝑝𝑇 in the framework above? 

Give formulas for the basic setup and/or propose a formula for estimation.  

 

Problem 5 (Markov chain Monte Carlo, McMC) 

Consider a regression model where there are errors in the explanatory variables. The model can 

be defined as,  

                                                                  𝑦𝑖 = 𝛽0 + 𝛽𝑇𝑥𝑖 + 𝜀𝑖 ,   𝑖 = 1, … , 𝑛,                                                (10) 

                                                                               𝑧𝑖 = 𝑥𝑖 + 𝜂𝑖,   𝑖 = 1, … , 𝑛,                                                  (11) 

where  𝑦𝑖 is the dependent variable, 𝑥𝑖 = [𝑥1𝑖, … 𝑥𝑞,𝑖] is the unobserved explanatory variable of 

dimension (𝑞 + 1) ×  1, and 𝑧𝑖 is an observation of the explanatory variable with error. The error terms  

𝜀𝑖 and 𝜂𝑖 are independent normally distributed with mean zero and variance 𝜎2  and 𝜏2 respectively. 

The joint probability distribution for 𝑋 and 𝑌 given Z is: 

                              𝑝(𝑥, 𝑦|𝑧, 𝛽0, 𝛽, 𝜎, 𝜏) = ∏ 𝜙(𝑦𝑖|𝛽0 + 𝛽𝑇𝑥𝑖, 𝜎2) ⋅ ∏ 𝜙(𝑥𝑗𝑖|𝑧𝑗𝑖 , 𝜏2)

𝑞

𝑗=1

,

𝑛

𝑖=1

                      (12) 

where: 

                                              𝜙(𝑦|𝜇, 𝜎2) =
1

√2𝜋𝜎2 
exp (−

1

2

(𝑥 − 𝜇)2

𝜎2
).                                    (13) 

The prior distributions of the parameters are improper and given as: 

 𝑝(𝛽0) ∝ 1,    𝑝(𝛽) ∝ 1 ,   𝑝(𝜎2) ∝ 1/𝜎2,   𝑝(𝜏2) ∝ 1/𝜏2 
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A McMC - algorithm for sampling this distribution is run in four parallels for slightly more 

than 106 iterations. The Gelman-Rubin statistics (GR) is computed based on the sample path 

from all four parallel chains, for all parameters. Based on the GR-Statistics we want to 

determine the appropriate length of the chain. The statistics has therefore been computed using 

fractions of the four chains. The statistics  are computed for using 𝐿 consecutive numbers 

starting at sample number 𝐷 = 1001, and data from all four parallel chains. Table 1 

summarizes this outcome of the experiment for important parameters. For the explanatory 

variables, we report only the minimum and maximum  over all cases.  

Table 1: Gelman-Rubin statistics based on  four parallel chains  for five different lengths of 

the chains.  

𝐿 104 5 × 104 105 5 × 105 106 

𝐺𝑅(𝛽0) 1.201987 1.080185 1.030826 1.008041 1.005866 

𝐺𝑅(𝛽) 1.135730 1.052199 1.027198 1.006974 1.002051 

𝐺𝑅(𝜎) 2.799689 3.688193 4.568641 1.344375 1.005035 

𝐺𝑅(𝜏) 1.749298 2.247959 2.532234 1.182309 1.004613 

mink(𝐺𝑅(𝑥𝑘)) 1.007988 1.001624 1.002567 1.000183 1.000056 

maxk(𝐺𝑅(𝑥𝑘)) 1.713188 2.244938 2.585777 1.226586 1.006909 
 
 

a) Why is it common to skip the first part of the sample path when computing summary 

statistics in MCMC methods? Are any of the numbers in table 1 surprising? Based on 

the results in Table 1, what would be your recommendation in terms of sample length?  

Which other numbers could be useful to evaluate number of samples desired? 

 

b) For the case 𝑞 = 1, derive the expressions that are needed for performing Gibbs- 

sampling, i.e., compute:  

• 𝑝(𝜎2 |𝛽0, 𝛽, 𝜏2, 𝑥, 𝑧, 𝑦 ) 

• 𝑝(𝜏2|𝛽0, 𝛽, 𝜎2, 𝑥, 𝑧, 𝑦 ) 

• 𝑝(𝛽0|𝛽, 𝜎2, 𝜏2, 𝑥, 𝑧, 𝑦 ) 

• 𝑝(𝛽|𝛽0, 𝜎2, 𝜏2, 𝑥, 𝑧, 𝑦 ) 

• 𝑝(𝑥𝑖|𝛽0, 𝛽, 𝜎2, 𝜏2, 𝑥−𝑖, 𝑧, 𝑦 ) 

 

In 5b) it might be helpful to know the inverse gamma distribution.  with parameters (𝛼, 𝛽) 

being shape and scale parameter respectively is defined over the support 𝑥 > 0:  

                                            𝑓(𝑥|𝛼, 𝛽 ) =
𝛽𝛼

Γ(𝛼)
⋅

1

𝑥𝛼+1
⋅ exp (−

𝛽

𝑥
 )                                               (14) 

where 
𝛽𝛼

Γ(𝛼)
, is a normalizing factor. 


