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UNIVERSITY OF OSLO 

Faculty of mathematics and natural sciences 

Exam in: STK4051/STK9051 –– Computational statistics  

Day of examination:  Thursday June 8th, 2023 

Examination hours: 15.00 – 19.00.  

This problem set consists of 6 pages 

Permitted aids:  None  

Note the final sheet contains definitions of densities that are used in problems. 

Problem 1 

Monte Carlo sampling is a technique for computing high dimensional integrals, such as 

                                                                ∫ ℎ(𝒙)𝑔(𝒙)𝑑𝒙                                                    (1)

𝑅𝑛

 

a) Given a set of samples  (𝒙1, 𝒙2, … , 𝒙𝐵) from the distribution 𝑔(𝒙). How would you 

approximate the integral in (1)?  What is the condition required for convergence?  

Using the samples from 𝑔(𝒙), we are now interested in computing the integral 

                                                                ∫ ℎ(𝒙)𝑓(𝒙) 𝑑𝒙

𝑅𝑛

                                                   (2) 

b) Develop a formula using samples from 𝑔(𝒙) to approximate the integral in (2). What is 

the condition needed for this modified scheme to converge. Finally, assume 𝑞(𝒙) to be 

proportional to 𝑓(𝒙), i. e.  𝑞(𝒙) = 𝑐 ⋅ 𝑓(𝒙)  where c is unknown. How would you then 

perform the estimate? Which names do we use for these two approaches? 

In a simulation study we want to compute the probability of exceedance, 𝑃(𝑋 > 𝑥0) in a 

standard normal distribution.  We propose two different algorithms:  
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Algorithm 1: 

for 𝑖 = 1, … , 𝐵  

1) Sample 𝑢𝑖 ∼  Uniform[𝑢, 0,1]  

2)  Compute 𝑥𝑖 = Φ−1(𝑢𝑖) ,  

      with Φ−1(⋅) being the quantile function of the standard normal distribution. 

Define the approximate exceedance probability as follows:  

𝑃1(𝑥0)  =  
1

𝐵
∑ 𝐼(𝑥𝑖  >  𝑥0)

𝐵

𝑖=1

                                                                                     (3) 

Algorithm 2: 

for 𝑖 = 1, … , 𝐵    

1) Sample 𝑢𝑖 ∼  Uniform[𝑢, 0,1]  

2) Compute 𝑥𝑖 = 𝑥0 − log 𝑢𝑖   

Define the approximate exceedance probability as follows (see page 6 for definitions of 

distributions in the expression):  

𝑃2(𝑥0) =  
1

𝐵
∑  

𝜙(𝑥𝑖; 0,1)

Exp(|𝑥𝑖 − 𝑥0|; 1)

𝐵

𝑖=1

                                                                           (4)    

c) Explain what happens in step 2 for both algorithms, i.e. What is the distribution of 𝑥𝑖 in 

the two algorithms? Argue why both methods approximate the desired exceedance 

probability.  

Figure 1 below shows the estimate as a function of 𝑥0, using B=1000 in both algorithms. The  

two algorithms have been run independently for several values of 𝑥0to create the figure.  

Figure 1: Estimation of exceedance probability using algorithm 1(left) and algorithm 2(right).   
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d) Which algorithm would you prefer? Argue the case both from the figure and from a theoretical 

perspective. The estimates contain some jitter creating a rugged appearance. Which well-known 

phenomenon creates this jitter? How would you change your selected algorithm so that the function 

get a smoother appearance? 

  

Problem 2 

Consider a model from waiting time analysis, where we record the waiting time between two events. 

When the events occur according to a constant rate, the waiting times will follow an exponential 

distribution Exp(𝑥; 𝜆 ) = Erlang(𝑥; 1, 𝜆), with 𝜆 being a parameter. If the sensor which record the 

events occasionally malfunction and miss out of one event, then the recorded waiting time is the sum 

of two exponential distributions, which follows an Erlang distribution Erlang(𝑥; 2, 𝜆 ). For simplicity, 

we will disregard the possibility of missing out on multiple events in succession. Let C denote which 

class a recorded data come from, if 𝐶 = 1 then it comes from the Exp(𝑥; 𝜆 ) distribution, if 𝐶 = 2 then 

it comes from the Erlang(𝑥; 2, 𝜆 ) distribution. We do not know which class observations belong to.  

Consider the following model for class and waiting time:  

Prob(𝐶𝑖 = 1) = 𝑝,   𝑝(𝑥𝑖|𝐶𝑖 = 1) = Exp(𝑥; 𝜆 ) 

Prob(𝐶𝑖 = 2) = 1 − 𝑝,   𝑝(𝑥𝑖|𝐶𝑖 = 2) = Erlang(𝑥; 2, 𝜆 ) 

a) Write down the likelihood for 𝑝, and 𝜆 for the waiting time observations according to 

this model. An implementation of the quasi-Newton algorithm BFGS is applied to find 

the Maximum Likelihood Estimate of 𝜃 = (𝑝, 𝜆). The results for 10 random start points 

are shown in Table 1.   What is special with quasi-Newton methods in comparison with 

Newton methods?  Comment on the results in Table 1. Is there an issue with the results? 

What could you do to avoid this problem in the code? 

Table1: Each column presents the results of one run of the BFGS algorithm, the different 

runs have different start points. Bottom row shows the estimate of the likelihood. Row two 

and three shows the estimated values after convergence. 

 

Run 1 2 3 4 5 6 7 8 9 10 

MLE p 1,110 0,731 1,110 1,110 0,732 1,110 0,732 0,731 0,731 1,110 

MLE 𝜆 1,461 2,083 1,461 1,461 2,082 1,461 2,083 2,083 2,083 1,461 

log ML -503,85 -503,05 -503,85 -503,85 -503,05 -503,85 -503,05 -503,05 -503,05 -503,85 
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b) Rather than optimizing the likelihood, we could use the EM algorithm.  Introduce 𝐶𝑖  as 

a hidden variable and write down the complete log-likelihood  𝑙(𝑝, 𝜆|𝒙, 𝑪). Define the 

Q function and show that it becomes: 

𝑄(𝑝, 𝜆|𝑝(𝑡), 𝜆(𝑡))

= ∑ 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝑝(𝑡), 𝜆(𝑡))[log 𝑝 + log 𝜆 − 𝜆𝑥𝑖]                                (5)

𝑛

𝑖=1

+   ∑ 𝑃(𝐶𝑖 = 2|𝑥𝑖 , 𝑝(𝑡), 𝜆(𝑡))[log(1 − 𝑝) + 2 log 𝜆 + log (𝑥𝑖) − 𝜆𝑥𝑖]  

𝑛

𝑖=1

 

 

Derive the expression for 𝑃(𝐶𝑖 = 1|𝑥𝑖 , 𝑝, 𝜆 ).  

 

c) Derive the formula for updating 𝑝 and 𝜆  in the EM algorithm and write down the full 

EM algorithm for the problem. (If you did not get an expression for 𝑃(𝐶𝑖 = 1|𝑥𝑖, 𝑝, 𝜆 ), 

just assume this can be evaluated) Which property does the EM algorithm have in terms 

of convergence.  

 

d) How would you apply a non-parametric bootstrap to evaluate the sample variance in 

the estimator from the EM algorithm? You can assume that you already have a function 

which returns the estimates of (𝑝, 𝜆), from a data set 𝒙. Figure 2 show the results from 

a bootstrap applied to the estimates of (𝑝, 𝜆). Discuss the results.  

Figure 2: Results for bootstrapping uncertainty in the MLE using EM algorithm.  
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Problem 3 

A nuclear power plant has 10 pumps. We are interested in the failure of the pumps, and model 

this using a poison process. We assume that each pump has its own failure rate 𝜆𝑖, The failure 

rates for the individual pumps are independent, but they have the same prior distribution: 

Gamma(𝜆𝑖; 𝛼, 𝛽).  We assume α to be fixed, but β to be random coming from a 

Gamma(𝛽;  𝛾, 𝛿), with γ and δ being fixed numbers. Our data are obtained by observing each 

pump a period 𝑡𝑖,  and count the number of failures  𝑥𝑖 in this period. We are interested in 

making parameter inference for the β and the individual failure rates, 𝜆𝑖, 𝑖 = 1, … 10.  

a) Argue that the shape of the posterior is known to proportionality by the expression: 

𝑝(𝝀, 𝛽|𝛼, 𝛾, 𝛿, 𝒙, 𝒕)

∝
𝛿𝛾𝛽𝛾−1

Γ(𝛾)
exp(−𝛿𝛽) ∏

𝛽𝛼 𝜆𝑖
𝛼−1

Γ(𝛼)
exp(−𝜆𝑖𝛽)

10

𝑖=1

∏
(𝜆𝑖𝑡𝑖)

𝑥𝑖  

𝑥𝑖!
exp(−𝜆𝑖𝑡𝑖)

10

𝑖=1

 

Derive/identify the distributions needed for performing the Gibbs sampler, that is:  

 

𝑝( 𝜆𝑖 |𝛼, 𝛽, 𝛾, 𝛿 𝒕, 𝒙, 𝝀−𝒊)  for 𝑖 = 1, … ,10 

and   

𝑝( 𝛽|𝛼, 𝛾, 𝛿, 𝝀, 𝒙, 𝒕) 

Here we use the notation that 𝝀−𝒊 contains the individual failure rates apart from  𝜆𝑖. 

b) An alternative to the Gibbs-Sampler is the Metropolis Hastings algorithm. In this 

algorithm a central quantity is the Metropolis Hastings ratio:  

                                       𝑅𝑀𝐻 =
𝑓(𝑥∗)𝑔(𝑥|𝑥∗)

𝑓(𝑥)𝑔(𝑥∗|𝑥)
.                                     (6) 

Define the terms on the right-hand side in equation (6). Provide a detailed description 

of the steps of the Metropolis-Hastings algorithm. Give an expression for the transition 

kernel in the Metropolis-Hastings algorithm for (for 𝑥 ≠ 𝑥∗). 

 

c) To converge in distribution to the target distribution 𝑓(𝑥), we need the transition kernel 

𝑃(𝑥, 𝑥∗) to satisfy the fixpoint equation:  

                               𝑓(𝑥∗) = ∫ 𝑓(𝑥)𝑃(𝑥, 𝑥∗)𝑑𝑥                                 (7) 

Show that if the transition kernel satisfies the detailed balance criterion: 

                                   𝑓(𝑥)𝑃(𝑥, 𝑥∗) = 𝑓(𝑥∗)𝑃(𝑥∗, 𝑥) ,                        (8) 
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then this is sufficient to satisfy the fixpoint equation in (7). Which additional 

requirement(s) is needed for a Markov chain Monte Carlo method to converge to its 

stationary limit distribution? 

 

Definitions of densities 

Density of Gaussian/Normal distribution: 

𝜙(𝑥; 𝜇, 𝜎2) =
1 

√2𝜋𝜎2
exp (−

1

2
(

𝑥 − 𝜇 

𝜎
)

2

) , 𝑥 ∈ ℝ    

Density of Exponential distribution: 

Exp(𝑥; 𝜆 ) =  {   
λ exp( −𝜆𝑥)          𝑥 > 0

0       else
 

Density of Erlang distribution: 

Erlang(𝑥; 𝑘, 𝜆 ) =  {
𝜆𝑘𝑥𝑘−1

(𝑘 − 1)!
exp( −𝜆𝑥) 𝑥 > 0

0 else

 

Density of Gamma distribution: 

Gamma(𝑥; 𝛼, 𝛽 ) =  {
𝛽𝛼𝑥𝛼−1

Γ(𝛼)
exp( −𝛽𝑥) 𝑥 > 0

0 else

 

Point probability of Poisson distribution: 

Poisson(𝑥;  𝜆𝑡) =
(𝜆𝑡)𝑥  

𝑥!
exp(−𝜆𝑡) , for 𝑥 = 0,1,2, … 

 


