
1 
 

Compulsory exercise for STK4051/9051 - Computational statistics 
 

Spring 2024 

 

Part 1 (of 2) 

This is the first part of the mandatory assignment (compulsory exercise) for STK4051/9051, 

spring semester 2024. The second part of the compulsory exercise will be made available in the 

end of Mars. (so it is a grate tip to complete the first part by the end of March) The deadline for 

the complete compulsory exercise (including part 2) is May 2nd the complete exercise has to be 

delivered within the Canvas system. You can get feedback on the first part by sending your 

solution in mail to the lecturer. Reports may be written in Norwegian or English, and should 

preferably be text processed (e.g. LaTeX, Word, RMarkdown). Write concisely. Relevant 

figures need to be included in the report. Copies of relevant parts of machine programs used (in 

R, python, or similar) are also to be included, perhaps as an appendix to the report. 

This first part contains five exercises and comprises five pages (including this front page). Some 

R-code is available from the course web-page. You are free to use other software, but would 

then need to translate or write your own code for that part included in the R-script.  

Data sets to be used are available on the course webpage, in a standard R save file. Read the 

corresponding .txt file to understand the structure of data. 

sparseDataWithErrors.dat Exercise 1,2,3 

blurredSparseDataWithErrors.dat Exercise 1g (STK 9051 only) 

optimalTransport.dat Exercise 4 

functionEstimationNN.dat   Exercise 5 

 

There will be a Q and A, with respect to the compulsory exercise on the course webpage. The 

page is updated when questions arise.  
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Exercise 1 (Lp-regularization) We will in this exercise consider the problem where the number 

of parameters we will estimate are of the same size as the number of data.  In this case it is 

common to use regularization to impose additional constraints on the model.  In a simplified 

regression model, we have data on the form: 

                                                        𝑦𝑖 = 𝛽𝑖 + 𝜀𝑖 , 𝑖 = 1, … , 𝑛                                                                   (1) 

Where  𝑦𝑖 is the data, 𝛽𝑖 is the parameter and 𝜀𝑖 is an error term, we will assume that the error 

term has variations according to a normal distribution with mean zero and unit variance, i.e.  

𝜀𝑖 ∼ 𝑁(0,12).  

a) Derive the maximum likelihood estimator for 𝛽𝑖, 𝑖 = 1, … , 𝑛. 

 

b) An alternative estimator is derived using a penalized least square, by solving the 

optimization problem: 

                                                        min
𝛽

{−ℓ(𝜷|𝒚) +
𝛾

𝑝
 ‖𝜷‖𝑝

𝑝}                                                              (2) 

where ℓ(𝜷|𝒚) is the likelihood,  

‖𝜷‖𝑝
𝑝 = ∑|𝛽𝑖|

𝑝

𝑛

𝑖=1

, 

and 𝛾 is a regularization parameter, giving a tradeoff between data fit and the penalty term. 

The problem (2) have a solution on the form: 

     

                                                        𝑓𝑝,𝛾(𝛽𝑖) = 𝑦𝑖 , 𝑖 = 1, … 𝑛                                                   (3)  

 

This means that the estimator for 𝛽𝑖  only depend on the corresponding data point 𝑦𝑖.  The 

expression for the function 𝑓𝑝,𝛾(𝛽𝑖) only depends on 𝑝, 𝛾.   Show that  

 

𝑓𝑝,𝛾(𝛽𝑖) = 𝛽𝑖 + 𝛾 ⋅ sign(𝛽𝑖)|𝛽𝑖|
𝑝−1 

 

c) For 𝛾=1 and 𝛾=0.2, plot the function 𝑓𝑝,𝛾(𝛽) for 𝑝 = 1.1, 2, 5 and 100 on the square  

[−5, 5] × [−5, 5], plot also the inverse function by flipping the order of the arguments in 

the plotting function. Give an interpretation of the results. 

 

d) Implement a function which finds the root of expression (3). Use the method of bisection 

(book page 23). The root of (3) will be the estimator 𝛽̂𝛾,𝑝(𝑦). What are good starting values 

for upper and lower bounds (in general)?   Test the algorithm for  𝛾 = 1, and 𝑝 = 1.1, 𝑝 =

2 and 𝑝 = 100. Evaluate the results for 𝑦 in the interval [−5, 5], and plot the results in the 

same form as in c). 

 

e) Use the data set sparseDataWithErrors.dat and perform estimation of parameters 

𝛽𝑖, 𝑖 = 1, … , 𝑛, from the data 𝑦𝑖, 𝑖 = 1, … , 𝑛. Compare the result to the ground truth in terms 
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of residual sum of squares.  Do the estimation for penalized regression, i.e. compute  𝛽̂𝛾,𝑝  

with 𝛾 = 1,  𝑝 = 1.1, 𝑝 = 2 and 𝑝 = 100, compare also to the MLE estimator. For 𝑝 =

100, try also to estimate the parameters 𝛽𝑖 by using the residuals,  

i.e.  𝛽̂1,100 
Alt = 𝑦 − 𝛽̂1,100 . Comment on the results. How does MLE measure up? 

 

f) In the linear regression problem for 𝑝 = 𝑛, we have data on the form: 

 𝒚 = 𝑿𝜷 + 𝜺 

Where 𝒚 is the (𝑛 × 1) data vector, 𝜷 is the (𝑛 × 1) parameter vector, 𝑿  is a (𝑛 × 𝑛) 

design matrix, and 𝜺 is the (𝑛 × 1) error vector, with 𝜺 ∼ N(𝟎, 𝑰). How can you use the 

ADMM algorithm together with the solution to the problem above to derive a solution to 

the penalized regression problem? 

 

min
β

{−ℓ(𝜷|𝒚, 𝑿) +
𝛾

𝑝
 ‖𝜷‖𝑝

𝑝} 

 

g) STK 9051 only.  Implement the ADMM algorithm for the Lp-regularization.  You can 

combine your result from 1.d with the ADMM algorithm and code presented for 𝑝 = 1 

during lecture.  Solve the problem using the data set blurredSparseDataWithErrors.dat 

given on the course page.  Use 𝛾 = 0.1, and give the solution for 𝑝 = 1.1 and 𝑝 = 2.  

Exercise 2 (EM-algorithm) We will now assume that the data 𝑌𝑖 , 𝑖 = 1, … 𝑛, are independent 

and identically distributed according to the mixture distribution: 

𝑓(𝑦𝑖) =  𝑝 ⋅ 𝜙(𝑦𝑖; 0,12) + (1 − 𝑝) ⋅ 𝜙(𝑦𝑖; 0, 𝜏2 + 12) 

where 𝜙(𝑦𝑖; 𝜇, 𝜎2) is the normal density with mean 𝜇 and variance 𝜎2. We will now consider 

estimation of the parameters 𝜃 = (𝑝, 𝜏2). 

a) Give an expression for the likelihood of  𝜃. 

 

b) Introduce the variable 𝐶𝑖 which identify which of the two modes 𝑦𝑖 belongs to.    Give an 

expression for the complete log-likelihood using the pairs (𝐶𝑖, 𝑦𝑖), 𝑖 = 1, … 𝑛 

 

c) Give an expression for  𝑄(𝜃|𝜃(𝑡)), what is the interpretation of 𝑄(𝜃|𝜃(𝑡)). Derive the 

estimates for 𝜃 = (𝑝, 𝜏2), using 𝑄(𝜃|𝜃(𝑡)). 

 

d) Implement the solution you derived in c) as a function and apply it to the data: 

sparseDataWithErrors.dat. What is a good initialization? 

 

e) Compute a bootstrap estimate of the uncertainty of the two parameters, using the function 

from d. Sample B=1000 times and display scatter plot of the values.  

 

f) Compute the observed information matrix. How can you use the observed information 

matrix to give an uncertainty estimate for 𝜃? Compare the result to e. 
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g) Compute the likelihood from 2a, in a dense grid (𝑝, 𝜏2) ∈  [0.8, 1 ] × [50, 130] . Normalize 

it by dividing by the maximum value and plot it in a contour plot. Use contours lines 

 [0.01 0.1 0.5 0.95], mark the ML estimator in the plot. Compare the results to e and f. 

 

Exercise 3  

Assuming that the data 𝑌𝑖 are on the same form as in Exercise 1, i.e.   

                                                                   𝑦𝑖 = 𝛽𝑖 + 𝜀𝑖 , 𝑖 = 1, … , 𝑛,        

where the parameters are as described for (1). Assume also that 𝑦𝑖, follows the mixture 

distribution as in Exercise 2, 

𝑓(𝑦𝑖) =  𝑝 ⋅ 𝜙(𝑦𝑖; 0,12) + (1 − 𝑝) ⋅ 𝜙(𝑦𝑖; 0, 𝜏2 + 12) 

a) Use a Bayesian interpretation of   𝛽𝑖,(e.g. assume 𝛽𝑖 is random) and argue 

that 𝑃(𝛽𝑖 = 0|𝐶𝑖 = 0) = 1, and that 𝑓(𝛽𝑖|𝐶𝑖 = 1) = 𝜙(𝛽𝑖; 0, 𝜏2).  Give an expression 

for 𝑃(𝛽𝑖 = 0|𝑦𝑖 = 𝑦).   

 

b) Argue that the estimator for 𝛽𝑖(i.e. the conditional expectation of the parameter given 

the data), is  𝑃(𝐶𝑖 = 1|𝑦𝑖 = 𝑦)𝐸(𝛽𝑖 |𝑦𝑖 = 𝑦, 𝐶𝑖 = 1). Plot this expression as a function 

of y in the interval [−5, 5],  and compare the result with 1.d. Use values: 𝑝 = 0.9, and   

𝜏2 = 80 . Hint: 𝐸(𝛽𝑖 |𝑦𝑖 = 𝑦, 𝐶𝑖 = 1) =
𝜏2

𝜏2+1
𝑦. 

 

c) For the dataset in sparseDataWithErrors.dat, evaluate the estimator using the 

values  𝑝 = 0.9, and   𝜏2 = 80 . Compare the result with 1.e, also in terms of residual 

sum of squares. 

Exercise 4: (Combinatorial optimization) In this problem we will consider a logistics problem. 

Assume that you work in a company which want to distribute their product to 20 cities, starting 

from its home city.  In the file optimalTransport.dat  you will find the locations of all 21 

cities the distances between the cities is the time it takes to travel between them. The first city 

in the file is the home city. We want to find the loop which reduces the traveling time going 

from the home city, cycling through all cities and returning to the home city. You can modify 

the scripts found on the home page of the course to solve the problem. 

a) Write an optimization using simulated annealing to find the optimal solution. Define 

your neighborhood using mathematical notation. Define your cooling schedule.  Argue 

that your proposed algorithm can reach all possible states. 

 

b) Implement also a TABU search for the optimal path. In what way does both the 

simulated annealing and the TABU algorithm differ from a steepest decent algorithm?  

 



5 
 

c) If your manager asks you whether the solution you propose is the optimal one, how 

should you reply? How can you improve confidence in your result?  

The company considers buying an additional lorry and want to find out how much this will 

reduce the distribution time. If the two lorries start at the same time the distribution time is 

defined as the time it takes until both lorries have returned to the home city.   

d) Suggest a modification to your simulated annealing algorithm such that you can have 

two cycles which both must start and end in the home city. Define a neighborhood for 

this setup and argue that the algorithm can reach all possible states using your proposed 

neighborhood. You do not need to implement the solution. 

 

Exercise 5: (Stochastic gradient decent, SGD) In this exercise we will try out the minibatch 

approach for optimizing neural nets.  We will consider a simple 1D situation. The input 𝑥 and 

output 𝑦 are both one dimensional. We will use a model architecture with one hidden layer, and 

a width of 50. As the activation function, 𝜎(𝑥), you should use the ReLu, which is defined as: 

𝜎(𝑥) = {
𝑥 for  𝑥 > 0
0 for  𝑥 ≤ 0

 

  Define also the derivative of the activation function to be: 

𝜎′(𝑥) = {
1  for  𝑥 > 0
0  for   𝑥 ≤ 0

 

The estimator have the form (also called the architecture): 

𝑓(𝑥) = ∑ 𝛽𝑖𝜎(𝛼𝑖𝑥 + 𝛼0,𝑖)

50

𝑖=1

+ 𝛽0 

We will minimize the squared sum of errors:                                              

sse = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑁

𝑖=1

 

a) Adapt the formulas from the lecture slides or the SGD note of Geir Storvik such that 

these can be used for the specific problem formulation defined above. Present the 

formulas that are relevant for implementing SGD on the current problem. How many 

parameters are there in the architecture? 

 

b) Implement the SGD for the architecture above and test it on the data found in 

functionEstimationNN.dat.  Test different alternatives for the learning rate and 

record the test error for each epoch.  Use a batch size of 50.  

 

c) Discuss the choices made and comment on the results from b. 


